ترغب بنشر مسار تعليمي؟ اضغط هنا

Visualizing Uncertainty in Probabilistic Graphs with Network Hypothetical Outcome Plots (NetHOPs)

291   0   0.0 ( 0 )
 نشر من قبل Dongping Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Probabilistic graphs are challenging to visualize using the traditional node-link diagram. Encoding edge probability using visual variables like width or fuzziness makes it difficult for users of static network visualizations to estimate network statistics like densities, isolates, path lengths, or clustering under uncertainty. We introduce Network Hypothetical Outcome Plots (NetHOPs), a visualization technique that animates a sequence of network realizations sampled from a network distribution defined by probabilistic edges. NetHOPs employ an aggregation and anchoring algorithm used in dynamic and longitudinal graph drawing to parameterize layout stability for uncertainty estimation. We present a community matching algorithm to enable visualizing the uncertainty of cluster membership and community occurrence. We describe the results of a study in which 51 network experts used NetHOPs to complete a set of common visual analysis tasks and reported how they perceived network structures and properties subject to uncertainty. Participants estimates fell, on average, within 11% of the ground truth statistics, suggesting NetHOPs can be a reasonable approach for enabling network analysts to reason about multiple properties under uncertainty. Participants appeared to articulate the distribution of network statistics slightly more accurately when they could manipulate the layout anchoring and the animation speed. Based on these findings, we synthesize design recommendations for developing and using animated visualizations for probabilistic networks.



قيم البحث

اقرأ أيضاً

Traditional methods of reporting changes in student responses have focused on class-wide averages. Such models hide information about the switches in responses by individual students over the course of a semester. We extend unpublished work by Steven Kanim on escalator diagrams which show changes in student responses from correct to incorrect (and vice versa) while representing pre- and post-instruction results on questions. Our extension consists of consistency plots in which we represent three forms of data: method of solution and correctness of solution both before and after instruction. Our data are from an intermediate mechanics class, and come from (nearly) identical midterm and final examination questions.
Annual recruitment data of new graduates are manually analyzed by human resources specialists (HR) in industries, which signifies the need to evaluate the recruitment strategy of HR specialists. Every year, different applicants send in job applicatio ns to companies. The relationships between applicants attributes (e.g., English skill or academic credential) can be used to analyze the changes in recruitment trends across multiple years data. However, most attributes are unnormalized and thus require thorough preprocessing. Such unnormalized data hinder the effective comparison of the relationship between applicants in the early stage of data analysis. Thus, a visual exploration system is highly needed to gain insight from the overview of the relationship between applicants across multiple years. In this study, we propose the Polarizing Attributes for Network Analysis of Correlation on Entities Association (Panacea) visualization system. The proposed system integrates a time-varying graph model and dynamic graph visualization for heterogeneous tabular data. Using this system, human resource specialists can interactively inspect the relationships between two attributes of prospective employees across multiple years. Further, we demonstrate the usability of Panacea with representative examples for finding hidden trends in real-world datasets and then describe HR specialists feedback obtained throughout Panaceas development. The proposed Panacea system enables HR specialists to visually explore the annual recruitment of new graduates.
131 - P. Zhang , P. Richard , T. Qian 2011
In order to improve the advantages and the reliability of the second derivative method in tracking the position of extrema from experimental curves, we develop a novel analysis method based on the mathematical concept of curvature. We derive the form ulas for the curvature in one and two dimensions and demonstrate their applicability to simulated and experimental angle-resolved photoemission spectroscopy data. As compared to the second derivative, our new method improves the localization of the extrema and reduces the peak broadness for a better visualization on intensity image plots.
120 - Trevor I. Smith 2016
Model analysis provides a mechanism for representing student learning as measured by standard multiple-choice surveys. The model plot contains information regarding both how likely students in a particular class are to choose the correct answer and h ow likely they are to choose an answer consistent with a well-documented conceptual model. Unfortunately Baos original presentation of the model plot did not include a way to represent uncertainty in these measurements. I present details of a method to add error bars to model plots by expanding the work of Sommer and Lindell. I also provide a template for generating model plots with error bars.
107 - Yiren Zhao , Duo Wang , Xitong Gao 2020
We present the first differentiable Network Architecture Search (NAS) for Graph Neural Networks (GNNs). GNNs show promising performance on a wide range of tasks, but require a large amount of architecture engineering. First, graphs are inherently a n on-Euclidean and sophisticated data structure, leading to poor adaptivity of GNN architectures across different datasets. Second, a typical graph block contains numerous different components, such as aggregation and attention, generating a large combinatorial search space. To counter these problems, we propose a Probabilistic Dual Network Architecture Search (PDNAS) framework for GNNs. PDNAS not only optimises the operations within a single graph block (micro-architecture), but also considers how these blocks should be connected to each other (macro-architecture). The dual architecture (micro- and marco-architectures) optimisation allows PDNAS to find deeper GNNs on diverse datasets with better performance compared to other graph NAS methods. Moreover, we use a fully gradient-based search approach to update architectural parameters, making it the first differentiable graph NAS method. PDNAS outperforms existing hand-designed GNNs and NAS results, for example, on the PPI dataset, PDNAS beats its best competitors by 1.67 and 0.17 in F1 scores.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا