ترغب بنشر مسار تعليمي؟ اضغط هنا

Embodied AI-Driven Operation of Smart Cities: A Concise Review

127   0   0.0 ( 0 )
 نشر من قبل Farzan Shenavarmasouleh
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A smart city can be seen as a framework, comprised of Information and Communication Technologies (ICT). An intelligent network of connected devices that collect data with their sensors and transmit them using cloud technologies in order to communicate with other assets in the ecosystem plays a pivotal role in this framework. Maximizing the quality of life of citizens, making better use of resources, cutting costs, and improving sustainability are the ultimate goals that a smart city is after. Hence, data collected from connected devices will continuously get thoroughly analyzed to gain better insights into the services that are being offered across the city; with this goal in mind that they can be used to make the whole system more efficient. Robots and physical machines are inseparable parts of a smart city. Embodied AI is the field of study that takes a deeper look into these and explores how they can fit into real-world environments. It focuses on learning through interaction with the surrounding environment, as opposed to Internet AI which tries to learn from static datasets. Embodied AI aims to train an agent that can See (Computer Vision), Talk (NLP), Navigate and Interact with its environment (Reinforcement Learning), and Reason (General Intelligence), all at the same time. Autonomous driving cars and personal companions are some of the examples that benefit from Embodied AI nowadays. In this paper, we attempt to do a concise review of this field. We will go through its definitions, its characteristics, and its current achievements along with different algorithms, approaches, and solutions that are being used in different components of it (e.g. Vision, NLP, RL). We will then explore all the available simulators and 3D interactable databases that will make the research in this area feasible. Finally, we will address its challenges and identify its potentials for future research.



قيم البحث

اقرأ أيضاً

The field of artificial intelligence (AI), regarded as one of the most enigmatic areas of science, has witnessed exponential growth in the past decade including a remarkably wide array of applications, having already impacted our everyday lives. Adva nces in computing power and the design of sophisticated AI algorithms have enabled computers to outperform humans in a variety of tasks, especially in the areas of computer vision and speech recognition. Yet, AIs path has never been smooth, having essentially fallen apart twice in its lifetime (winters of AI), both after periods of popular success (summers of AI). We provide a brief rundown of AIs evolution over the course of decades, highlighting its crucial moments and major turning points from inception to the present. In doing so, we attempt to learn, anticipate the future, and discuss what steps may be taken to prevent another winter.
This paper presents a design of a non-player character (AI) for promoting balancedness in use of body segments when engaging in full-body motion gaming. In our experiment, we settle a battle between the proposed AI and a player by using FightingICE, a fighting game platform for AI development. A middleware called UKI is used to allow the player to control the game by using body motion instead of the keyboard and mouse. During gameplay, the proposed AI analyze health states of the player; it determines its next action by predicting how each candidate action, recommended by a Monte-Carlo tree search algorithm, will induce the player to move, and how the players health tends to be affected. Our result demonstrates successful improvement in balancedness in use of body segments on 4 out of 5 subjects.
We describe a framework for research and evaluation in Embodied AI. Our proposal is based on a canonical task: Rearrangement. A standard task can focus the development of new techniques and serve as a source of trained models that can be transferred to other settings. In the rearrangement task, the goal is to bring a given physical environment into a specified state. The goal state can be specified by object poses, by images, by a description in language, or by letting the agent experience the environment in the goal state. We characterize rearrangement scenarios along different axes and describe metrics for benchmarking rearrangement performance. To facilitate research and exploration, we present experimental testbeds of rearrangement scenarios in four different simulation environments. We anticipate that other datasets will be released and new simulation platforms will be built to support training of rearrangement agents and their deployment on physical systems.
Central to the concept of multi-domain operations (MDO) is the utilization of an intelligence, surveillance, and reconnaissance (ISR) network consisting of overlapping systems of remote and autonomous sensors, and human intelligence, distributed amon g multiple partners. Realising this concept requires advancement in both artificial intelligence (AI) for improved distributed data analytics and intelligence augmentation (IA) for improved human-machine cognition. The contribution of this paper is threefold: (1) we map the coalition situational understanding (CSU) concept to MDO ISR requirements, paying particular attention to the need for assured and explainable AI to allow robust human-machine decision-making where assets are distributed among multiple partners; (2) we present illustrative vignettes for AI and IA in MDO ISR, including human-machine teaming, dense urban terrain analysis, and enhanced asset interoperability; (3) we appraise the state-of-the-art in explainable AI in relation to the vignettes with a focus on human-machine collaboration to achieve more rapid and agile coalition decision-making. The union of these three elements is intended to show the potential value of a CSU approach in the context of MDO ISR, grounded in three distinct use cases, highlighting how the need for explainability in the multi-partner coalition setting is key.
102 - Han Liu , Vivian Lai , Chenhao Tan 2021
Although AI holds promise for improving human decision making in societally critical domains, it remains an open question how human-AI teams can reliably outperform AI alone and human alone in challenging prediction tasks (also known as complementary performance). We explore two directions to understand the gaps in achieving complementary performance. First, we argue that the typical experimental setup limits the potential of human-AI teams. To account for lower AI performance out-of-distribution than in-distribution because of distribution shift, we design experiments with different distribution types and investigate human performance for both in-distribution and out-of-distribution examples. Second, we develop novel interfaces to support interactive explanations so that humans can actively engage with AI assistance. Using virtual pilot studies and large-scale randomized experiments across three tasks, we demonstrate a clear difference between in-distribution and out-of-distribution, and observe mixed results for interactive explanations: while interactive explanations improve human perception of AI assistances usefulness, they may reinforce human biases and lead to limited performance improvement. Overall, our work points out critical challenges and future directions towards enhancing human performance with AI assistance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا