ﻻ يوجد ملخص باللغة العربية
Ionization potentials, excitation energies, transition properties, and hyperfine structure constants of the low-lying $3p^6 3d^{9} ^2D_{5/2}$, $3p^6 3d^{9} ^2D_{3/2}$, $3p^5 3d^{10} ^2P_{3/2}$ and $3p^5 3d^{10} ^2P_{1/2}$ atomic states of the Co-like highly-charged ions such as Y$^{12+}$, Zr$^{13+}$, Nb$^{14+}$, Mo$^{15+}$, Tc$^{16+}$, Ru$^{17+}$, Rh$^{18+}$, Pd$^{19+}$, Ag$^{20+}$ and Cd$^{21+}$ are investigated. The singles and doubles approximated relativistic coupled-cluster theory in the framework of one electron removal Fock-space formalism is employed over the Dirac-Hartree-Fock calculations to account for the electron correlation effects for determining the aforementioned properties. Higher-order relativistic corrections due to the Breit interaction and quantum electrodynamics effects in the evaluation of energies are also quantified explicitly. Our estimated values are compared with the other available theoretical calculations and experimental results, which are found to be in good agreement with each other.
Roles of electron correlation effects in the determination of attachment energies, magnetic dipole hyperfine structure constants and electric dipole (E1) matrix elements of the low-lying states in the singly charged cadmium ion (Cd$^+$) have been ana
We present high accuracy relativistic coupled cluster calculations of the P-odd interaction coefficient $W_A$ describing the nuclear anapole moment effect on the molecular electronic structure. The molecule under study, BaF, is considered a promising
A relativistic coupled-cluster (RCC) theory is implemented to study electron impact excitations of atomic species. As a test case, the electron impact excitations of the $3s ~ ^2S_{1/2} - 3p ~ ^2P_{1/2;3/2}$ resonance transitions are investigated in
Relativistic calculations of the isotope shifts of energy levels in highly charged Li-like ions are performed. The nuclear recoil (mass shift) contributions are calculated by merging the perturbative and large-scale configuration-interaction Dirac-Fo
Calculations of various corrections to the g factor of Li-like ions are presented, which result in a significant improvement of the theoretical accuracy in the region Z = 6-92. The configuration-interaction Dirac-Fock method is employed for the evalu