ﻻ يوجد ملخص باللغة العربية
Two groups of astronomers used large telescopes Keck and VLT for decades to observe trajectories of bright stars near the Galactic Centre. Based on results of their observations astronomers concluded that trajectories of the stars are roughly elliptical and foci of the orbits are approximately coincide with the Galactic Centre position. It gives an opportunity to claim that the Newtonian potential of point like mass around $4.3times 10^6 M_odot$ is a good initial approximation for the gravitational potential near the Galactic Centre. In the last years, the astronomers found that gravitational redshift of S2 star near pericenter passage in May 2018 is in accordance with general relativity predictions. In 2020 the GRAVITY team found that the observed relativistic precession of S2 star orbit is also consistent with theoretical estimates calculated for a weak gravitational field approximation in a Schwarzschild black hole. In last years a a self-gravitating dark matter core--halo distribution suggested by Ruffini, Arguelles and Rueda (MNRAS, 2015) (RAR model) was proposed and recently Becerra-Vergara et al. (MNRAS, 2021) claimed that this model provides a better fit of trajectories of bright stars in comparison with the conventional model with the supermassive black hole. We confirm that in the case of this dark matter distribution model for a dense core trajectories of test bodies are elliptical but in this case centers (not foci) of these ellipses should coincide with the Galactic Centre and orbital periods do not depend on semi-major axis and it contradicts observational data and therefore, we concluded supermassive black hole is a preferable model in comparison with the a dense core--diluted halo density profile for the Galactic Centre.
The S-Stars in the Galactic-center region are found to be on near-perfect Keplerian orbits around presumably a supermassive black hole, with periods of 15-50 yr. Since these stars reach a few percent of light speed at pericenter, various relativistic
The highly elliptical, 16-year-period orbit of the star S2 around the massive black hole candidate Sgr A* is a sensitive probe of the gravitational field in the Galactic centre. Near pericentre at 120 AU, ~1400 Schwarzschild radii, the star has an or
{The Galactic centre (GC) is a unique astrophysical laboratory to study the stellar population of galactic nuclei because it is the only galactic nucleus whose stars can be resolved down to milliparsec scales. However, the extreme and spatially highl
The mass assembly history of the Milky Way can inform both theory of galaxy formation and the underlying cosmological model. Thus, observational constraints on the properties of both its baryonic and dark matter contents are sought. Here we show that
We present high-angular-resolution radio continuum observations of the Quintuplet cluster, one of the most emblematic massive clusters in the Galactic centre. Data were acquired in two epochs and at 6 and 10 GHz with the Karl J. Jansky Very Large Arr