ﻻ يوجد ملخص باللغة العربية
Given an unlabeled graph $G$ on $n$ vertices, let ${N_{G}(v)}_{v}$ be the collection of subgraphs of $G$, where for each vertex $v$ of $G$, $N_{G}(v)$ is the subgraph of $G$ induced by vertices of $G$ of distance at most one from $v$. We show that there are universal constants $C,c>0$ with the following property. Let the sequence $(p_n)_{n=1}^infty$ satisfy $n^{-1/2}log^C nleq p_nleq c$. For each $n$, let $Gamma_n$ be an unlabeled $G(n,p_n)$ Erdos-Renyi graph. Then with probability $1-o(1)$, any unlabeled graph $tilde Gamma_n$ on $n$ vertices with ${N_{tilde Gamma_n}(v)}_{v}={N_{Gamma_n}(v)}_{v}$ must coincide with $Gamma_n$. This establishes $p_n= tilde Theta(n^{-1/2})$ as the transition for the density parameter $p_n$ between reconstructability and non-reconstructability of Erdos-Renyi graphs from their $1$--neighborhoods, answering a question of Gaudio and Mossel.
Graph shotgun assembly refers to the problem of reconstructing a graph from a collection of local neighborhoods. In this paper, we consider shotgun assembly of ErdH{o}s-Renyi random graphs $G(n, p_n)$, where $p_n = n^{-alpha}$ for $0 < alpha < 1$. We
Through Monte Carlo Simulation, the well-known majority-vote model has been studied with noise on directed random graphs. In order to characterize completely the observed order-disorder phase transition, the critical noise parameter $q_c$, as well as
Reaction networks are commonly used within the mathematical biology and mathematical chemistry communities to model the dynamics of interacting species. These models differ from the typical graphs found in random graph theory since their vertices are
Let $A in mathbb{R}^{n times n}$ be the adjacency matrix of an ErdH{o}s Renyi graph $G(n, d/n)$ for $d = omega(1)$ and $d leq 3log(n)$. We show that as $n$ goes to infinity, with probability that goes to $1$, the adjacency matrix of the $3$-core of $G(n, d/n)$ is invertible.
We develop a quantitative large deviations theory for random Bernoulli tensors. The large deviation principles rest on a decomposition theorem for arbitrary tensors outside a set of tiny measure, in terms of a novel family of norms generalizing the c