ﻻ يوجد ملخص باللغة العربية
In this note we investigate complete non-selfadjointness for all maximally dissipative extensions of a Schrodinger operator on a half-line with dissipative bounded potential and dissipative boundary condition. We show that all maximally dissipative extensions that preserve the differential expression are completely non-selfadjoint. However, it is possible for maximally dissipative extensions to have a one-dimensional reducing subspace on which the operator is selfadjoint. We give a characterisation of these extensions and the corresponding subspaces and present a specific example.
We study the trace class perturbations of the half-line, discrete Laplacian and obtain a new bound for the perturbation determinant of the corresponding non-self-adjoint Jacobi operator. Based on this bound, we obtain the Lieb--Thirring inequalities
We study the one-dimensional Schrodinger operators $$ S(q)u:=-u+q(x)u,quad uin mathrm{Dom}left(S(q)right), $$ with $1$-periodic real-valued singular potentials $q(x)in H_{operatorname{per}}^{-1}(mathbb{R},mathbb{R})$ on the Hilbert space $L_{2}left(m
Let $H_0$ be a purely absolutely continuous selfadjoint operator acting on some separable infinite-dimensional Hilbert space and $V$ be a compact non-selfadjoint perturbation. We relate the regularity properties of $V$ to various spectral properties
We consider non-local Schrodinger operators with kinetic terms given by several different types of functions of the Laplacian and potentials decaying to zero at infinity, and derive conditions ruling embedded eigenvalues out. These results contrast a
The present work aims at obtaining estimates for transformation operators for one-dimensional perturbed radial Schrodinger operators. It provides more details and suitable extensions to already existing results, that are needed in other recent contributions dealing with these kinds of operators.