ﻻ يوجد ملخص باللغة العربية
In this paper, we first prove the local well-posedness of strong solutions to the incompressible Hall-MHD system with initial data $(u_0,B_0)in H^{frac{1}{2}+sigma}(mathbb{R}^3)times H^{frac{3}{2}}(mathbb{R}^3)$ and $sigmain (0,2)$. In particular, if the viscosity coefficient is equal to the resistivity coefficient, we can reduce $sigma$ to $0$ with the aid of the new formulation of the Hall-MHD system observed by cite{MR4193644}. Moreover, we establish the global well-posedness in $H^{frac{1}{2}+sigma}(mathbb{R}^3)times H^{frac{3}{2}}(mathbb{R}^3)$ with $sigmain (0,2)$ for small initial data and get the optimal time-decay rates of solutions. Our results improves some previous works.
We prove that the derivative nonlinear Schr{o}dinger equation is globally well-posed in $H^{frac 12} (mathbb{R})$ when the mass of initial data is strictly less than $4pi$.
We prove that the Korteweg-de Vries initial-value problem is globally well-posed in $H^{-3/4}(R)$ and the modified Korteweg-de Vries initial-value problem is globally well-posed in $H^{1/4}(R)$. The new ingredient is that we use directly the contract
We prove global well-posedness of the fifth-order Korteweg-de Vries equation on the real line for initial data in $H^{-1}(mathbb{R})$. By comparison, the optimal regularity for well-posedness on the torus is known to be $L^2(mathbb{R}/mathbb{Z})$.
We prove that the cubic nonlinear Schrodinger equation (both focusing and defocusing) is globally well-posed in $H^s(mathbb R)$ for any regularity $s>-frac12$. Well-posedness has long been known for $sgeq 0$, see [51], but not previously for any $s<0
We prove global well-posedness for the $3D$ radial defocusing cubic wave equation with data in $H^{s} times H^{s-1}$, $1>s>{7/10}$.