ﻻ يوجد ملخص باللغة العربية
Borophene, a monoatomic layer of boron atoms, stands out among two-dimensional (2D) materials, with its versatile properties of polymorphism, metallicity, plasmonics, superconductivity, tantalizing for physics exploration and next-generation devices. Yet its phases are all synthesized on and stay bound to metal substrates, hampering both characterization and use. The growth on the inert insulator would allow post-synthesis exfoliation of borophene, but its weak adhesion to such substrate results in a very high 2D-nucleation barrier preventing clean borophene growth. This challenge can be circumvented in a devised and demonstrated here, with ab initio calculations, strategy. Naturally present 1D-defects, the step-edges on h-BN substrate surface, enable boron epitaxial assembly, reduce the nucleation dimensionality and lower the barrier by an order of magnitude (to 1.1 eV or less), yielding v1/9 phase. Weak borophene adhesion to the insulator makes it readily accessible for comprehensive property tests or transfer into the device setting.
The growth of spiral mounds containing a screw dislocation is compared to the growth of wedding cakes by two-dimensional nucleation. Using phase field simulations and homoepitaxial growth experiments on the Pt(111) surface we show that both structure
The interest in Fe-chalcogenide unconventional superconductors is intense after the critical temperature of FeSe was reported enhanced by more than one order of magnitude in the monolayer limit at the interface to an insulating oxide substrate. In he
The growth of single layer graphene nanometer size domains by solid carbon source molecular beam epitaxy on hexagonal boron nitride (h-BN) flakes is demonstrated. Formation of single-layer graphene is clearly apparent in Raman spectra which display s
We investigate the influence of modified growth conditions during the spontaneous formation of GaN nanowires on Si(111) in plasma-assisted molecular beam epitaxy. We find that a two-step growth approach, where the substrate temperature is increased d
The effects of mobility of small islands on island growth in molecular beam epitaxy are studied. It is shown that small island mobility affects both the scaling and morphology of islands during growth. Three microscopic models are considered, in whic