ﻻ يوجد ملخص باللغة العربية
In this paper, we study the thermodynamics especially the $P$-$V$ criticality of the Friedmann-Robertson-Walker (FRW) universe in the novel 4-dimensional Gauss-Bonnet gravity, where we define the thermodynamic pressure $P$ from the cosmological constant $Lambda$ as $P=-frac{Lambda}{8pi}$. We obtain the first law of thermodynamics and equation of state of the FRW universe. We find that, if the Gauss-Bonnet coupling constant $alpha$ is positive, there is no $P$-$V$ phase transition. If $alpha$ is negative, there are $P$-$V$ phase transitions and critical behaviors within $-1/3leqomegaleq1/3$. Particularly, there are two critical points of the $P$-$V$ criticality in the case $alpha<0,~-1/3<omega<1/3$. We investigate these $P$-$V$ criticality around the critical points, and calculate the critical exponents. We find that these critical exponents in the $-1/3<omegaleq1/3$ case are consistent with those in the mean field theory, and hence satisfy the scaling laws.
We study the properties of compact objects in a particular 4D Horndeski theory originating from higher dimensional Einstein-Gauss-Bonnet gravity. Remarkably, an exact vacuum solution is known. This compact object differs from general relativity mostl
In this paper we study the observational constraints that can be imposed on the coupling parameter, $hat alpha$, of the regularized version of the 4-dimensional Einstein-Gauss-Bonnet theory of gravity. We use the scalar-tensor field equations of this
We present results from a numerical study of spherical gravitational collapse in shift symmetric Einstein dilaton Gauss-Bonnet (EdGB) gravity. This modified gravity theory has a single coupling parameter that when zero reduces to general relativity (
The current trend concerning dense matter physics at sufficiently high densities and low temperatures is expected to behave as a degenerate Fermi gas of quarks forming Cooper pairs, namely a color superconductor, in the core of compact objects. In th
We study the $P-V$ criticality and phase transition in the extended phase space of charged Gauss-Bonnet black holes in anti-de Sitter space, where the cosmological constant appears as a dynamical pressure of the system and its conjugate quantity is t