ترغب بنشر مسار تعليمي؟ اضغط هنا

$Lambda_{rm s}$CDM model: $Lambda$CDM model with a sign switching cosmological `constant

110   0   0.0 ( 0 )
 نشر من قبل \\\"Ozg\\\"ur Akarsu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Inspired by the recent conjecture that the universe has transitioned from AdS vacua to dS vacua in the late universe made via graduated dark energy, we extend the $Lambda$CDM model by a cosmological `constant ($Lambda_{rm s}$) that switches sign at certain redshift, $z_dagger$, and name it as $Lambda_{rm s}$CDM. We discuss the construction and theoretical features of this model, and find out that, when the consistency of $Lambda_{rm s}$CDM with the CMB data is ensured, (i) $z_daggergtrsim1.1$ is implied by the condition that the universe monotonically expands, (ii) $H_0$ is inversely correlated with $z_dagger$ and reaches $approx74.5~{rm km, s^{-1}, Mpc^{-1}}$ for $z_dagger=1.5$, (iii) $H(z)$ presents an excellent fit to the Ly-$alpha$ measurements provided that $z_daggerlesssim 2.34$. We further investigate the model constraints by using the full Planck CMB data, with and without BAO data. We find that the CMB data alone does not constrain $z_dagger$ but CMB+BAO dataset favors the sign switch of $Lambda_{rm s}$ providing the constraint: $z_dagger=2.44pm0.29$ (68% CL). Our analysis reveals that the lower and upper limits of $z_dagger$ are controlled by the Galaxy and Ly-$alpha$ BAO measurements, respectively, and the larger $z_{dagger}$ values imposed by the Galaxy BAO data prevent the model from achieving the highest local $H_0$ measurements. In general, $Lambda_{rm s}$CDM (i) relaxes the $H_0$ tension while being fully consistent with the TRGB measurement, (ii) removes the discrepancy with the Ly-$alpha$ measurements, (iii) relaxes the $S_8$ tension, and (iv) finds a better agreement with the BBN constraints of physical baryon density. We find no strong statistical evidence to discriminate between the $Lambda_{rm s}$CDM and $Lambda$CDM models. However, interesting and promising features of $Lambda_{rm s}$CDM provide an upper edge over $Lambda$CDM.



قيم البحث

اقرأ أيضاً

We analyze Brans-Dicke gravity with a cosmological constant, $Lambda$, and cold dark matter (BD-$Lambda$CDM for short) in the light of the latest cosmological observations on distant supernovae, Hubble rate measurements at different redshifts, baryon ic acoustic oscillations, large scale structure formation data, gravitational weak-lensing and the cosmic microwave background under full Planck 2015 CMB likelihood. Our analysis includes both the background and perturbations equations. We find that BD-$Lambda$CDM is observationally favored as compared to the concordance $Lambda$CDM model, which is traditionally defined within General Relativity (GR). In particular, some well-known persisting tensions of the $Lambda$CDM with the data, such as the excess in the mass fluctuation amplitude $sigma_8$ and specially the acute $H_0$-tension with the local measurements, essentially disappear in this context. Furthermore, viewed from the GR standpoint, BD-$Lambda$CDM cosmology mimics quintessence at $gtrsim3sigma$ c.l. near our time.
In this work we discuss a general approach for the dissipative dark matter considering a nonextensive bulk viscosity and taking into account the role of generalized Friedmann equations. This generalized $Lambda$CDM model encompasses a flat universe w ith a dissipative nonextensive viscous dark matter component, following the Eckart theory of bulk viscosity. In order to compare models and constrain cosmological parameters, we perform Bayesian analysis using one of the most recent observations of Type Ia Supernova, baryon acoustic oscillations, and cosmic microwave background data.
116 - Arman Shafieloo 2018
We combine model-independent reconstructions of the expansion history from the latest Pantheon supernovae distance modulus compilation and measurements from baryon acoustic oscillation to test some important aspects of the concordance model of cosmol ogy namely the FLRW metric and flatness of spatial curvature. We then use the reconstructed expansion histories to fit growth measurement from redshift-space distortion and obtain strong constraints on $(Omega_mathrm{m},gamma,sigma_8)$ in a model independent manner. Our results show consistency with a spatially flat FLRW Universe with general relativity to govern the perturbation in the structure formation and the cosmological constant as dark energy. However, we can also see some hints of tension among different observations within the context of the concordance model related to high redshift observations ($z > 1$) of the expansion history. This supports earlier findings of Sahni et al. (2014) & Zhao et al. (2017) and highlights the importance of precise measurement of expansion history and growth of structure at high redshifts.
We construct a generalization of the standard $Lambda$CDM model, wherein we simultaneously replace the spatially flat Robertson-Walker metric with its simplest anisotropic generalization (LRS Bianchi I metric), and couple the cold dark matter to the gravity in accordance with the energy-momentum squared gravity (EMSG) of the form $f(T_{mu u}T^{mu u})propto T_{mu u}T^{mu u}$. These two modifications -- namely, two new stiff fluid-like terms of different nature -- can mutually cancel out, i.e., the shear scalar can be screened completely, and reproduce mathematically exactly the same Friedmann equation of the standard $Lambda$CDM model. This evades the BBN limits on the anisotropy, and thereby provides an opportunity to manipulate the cosmic microwave background quadrupole temperature fluctuation at the desired amount. We further discuss the consequences of the model on the very early times and far future of the Universe. This study presents also an example of that the EMSG of the form $f(T_{mu u}T^{mu u})propto T_{mu u}T^{mu u}$, as well as similar type other constructions, is not necessarily relevant only to very early Universe but may even be considered in the context of a major problem of the current cosmology related to the present-day Universe, the so-called $H_0$ problem.
We study Planck 2015 cosmic microwave background (CMB) anisotropy data using the energy density inhomogeneity power spectrum generated by quantum fluctuations during an early epoch of inflation in the non-flat $Lambda$CDM model. Unlike earlier analys es of non-flat models, which assumed an inconsistent power-law power spectrum of energy density inhomogeneities, we find that the Planck 2015 data alone, and also in conjunction with baryon acoustic oscillation measurements, are reasonably well fit by a closed $Lambda$CDM model in which spatial curvature contributes a few percent of the current cosmological energy density budget. In this model, the measured Hubble constant and non-relativistic matter density parameter are in good agreement with values determined using most other data. Depending on parameter values, the closed $Lambda$CDM model has reduced power, relative to the tilted, spatially-flat $Lambda$CDM case, and can partially alleviate the low multipole CMB temperature anisotropy deficit and can help partially reconcile the CMB anisotropy and weak lensing $sigma_8$ constraints, at the expense of somewhat worsening the fit to higher multipole CMB temperature anisotropy data. Our results are interesting but tentative; a more thorough analysis is needed to properly gauge their significance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا