ﻻ يوجد ملخص باللغة العربية
This paper deals with control of partially observable discrete-time stochastic systems. It introduces and studies the class of Markov Decision Processes with Incomplete information and with semi-uniform Feller transition probabilities. The important feature of this class of models is that the classic reduction of such a model with incomplete observation to the completely observable Markov Decision Process with belief states preserves semi-uniform Feller continuity of transition probabilities. Under mild assumptions on cost functions, optimal policies exist, optimality equations hold, and value iterations converge to optimal values for this class of models. In particular, for Partially Observable Markov Decision Processes the results of this paper imply new and generalize several known sufficient conditions on transition and observation probabilities for the existence of optimal policies, validity of optimality equations, and convergence of value iterations.
This paper studies average-cost Markov decision processes with semi-uniform Feller transition probabilities. This class of MDPs was recently introduced by the authors to study MDPs with incomplete information. This paper studies the validity of optim
This work considers two-player zero-sum semi-Markov games with incomplete information on one side and perfect observation. At the beginning, the system selects a game type according to a given probability distribution and informs to Player 1 only. Af
We study a two-player, zero-sum, stochastic game with incomplete information on one side in which the players are allowed to play more and more frequently. The informed player observes the realization of a Markov chain on which the payoffs depend, wh
This paper studies transition probabilities from a Borel subset of a Polish space to a product of two Borel subsets of Polish spaces. For such transition probabilities it introduces and studies semi-uniform Feller continuity and a weaker property cal
We study discrete-time discounted constrained Markov decision processes (CMDPs) on Borel spaces with unbounded reward functions. In our approach the transition probability functions are weakly or set-wise continuous. The reward functions are upper se