ﻻ يوجد ملخص باللغة العربية
In the framework of the perturbative Quantum Chromodynamics factorization, the cross section of the heavy meson production via the combination of a heavy quark with a light one can be factorized to be the convolution of the combination matrix element, the light quark distribution function, and the hard partonic sub-cross section of the heavy quark production. The partonic distribution and the combination matrix element are functions of a scaling variable, respectively, which is the momentum fraction of the corresponding quark with respect to the heavy meson. We studied the $D^{*pm}$ production in jet via combination in pp collision at the LHC. Our calculation can be summed with the fragmentation contribution, and the total result is comparable with the experimental data. The combination matrix elements can be further studied in various hadron production processes.
We study $D$ - meson production at forward rapidities taking into account the non - linear effects in the QCD dynamics and the intrinsic charm component of the proton wave function. The total cross section, the rapidity distributions and the Feynman
At the chiral restoration/deconfinement transition, most hadrons undergo a Mott transition from being bound states in the confined phase to resonances in the deconfined phase. We investigate the consequences of this qualitative change in the hadron s
We evaluate the s-wave interaction of pseudoscalar and vector mesons with both charm and beauty to investigate the possible existence of molecular $BD$, $B^*D$, $BD^*$, $B^*D^*$, $Bbar D$, $B^*bar D$, $Bbar D^*$ or $B^* bar D^*$ meson states. The sca
We present recent results on light mesons based on Dalitz plot analyses of charm decays from Fermilab experiment E791. Scalar mesons are found to have large contributions to the decays studied, $D^+to K^-pi^+pi^+$ and $D^+, D_s^+topi^-pi^+pi^+$. From
The LHCb collaboration has recently performed a first measurement of the angular production asymmetry in the distribution of beauty quarks and anti-quarks at a hadron collider. We calculate the corresponding standard model prediction for this asymmet