ﻻ يوجد ملخص باللغة العربية
Providing timely accessibility reminders of a point-of-interest (POI) plays a vital role in improving user satisfaction of finding places and making visiting decisions. However, it is difficult to keep the POI database in sync with the real-world counterparts due to the dynamic nature of business changes. To alleviate this problem, we formulate and present a practical solution that jointly extracts POI mentions and identifies their coupled accessibility labels from unstructured text. We approach this task as a sequence tagging problem, where the goal is to produce <POI name, accessibility label> pairs from unstructured text. This task is challenging because of two main issues: (1) POI names are often newly-coined words so as to successfully register new entities or brands and (2) there may exist multiple pairs in the text, which necessitates dealing with one-to-many or many-to-one mapping to make each POI coupled with its accessibility label. To this end, we propose a Geographic-Enhanced and Dependency-guIded sequence Tagging (GEDIT) model to concurrently address the two challenges. First, to alleviate challenge #1, we develop a geographic-enhanced pre-trained model to learn the text representations. Second, to mitigate challenge #2, we apply a relational graph convolutional network to learn the tree node representations from the parsed dependency tree. Finally, we construct a neural sequence tagging model by integrating and feeding the previously pre-learned representations into a CRF layer. Extensive experiments conducted on a real-world dataset demonstrate the superiority and effectiveness of GEDIT. In addition, it has already been deployed in production at Baidu Maps. Statistics show that the proposed solution can save significant human effort and labor costs to deal with the same amount of documents, which confirms that it is a practical way for POI accessibility maintenance.
Joint extraction refers to extracting triples, composed of entities and relations, simultaneously from the text with a single model. However, most existing methods fail to extract all triples accurately and efficiently from sentences with overlapping
In this paper, we explore the slot tagging with only a few labeled support sentences (a.k.a. few-shot). Few-shot slot tagging faces a unique challenge compared to the other few-shot classification problems as it calls for modeling the dependencies be
Evidence plays a crucial role in any biomedical research narrative, providing justification for some claims and refutation for others. We seek to build models of scientific argument using information extraction methods from full-text papers. We prese
Chinese word segmentation and dependency parsing are two fundamental tasks for Chinese natural language processing. The dependency parsing is defined on word-level. Therefore word segmentation is the precondition of dependency parsing, which makes de
In the pre deep learning era, part-of-speech tags have been considered as indispensable ingredients for feature engineering in dependency parsing. But quite a few works focus on joint tagging and parsing models to avoid error propagation. In contrast