ترغب بنشر مسار تعليمي؟ اضغط هنا

GEDIT: Geographic-Enhanced and Dependency-Guided Tagging for Joint POI and Accessibility Extraction at Baidu Maps

86   0   0.0 ( 0 )
 نشر من قبل Jizhou Huang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Providing timely accessibility reminders of a point-of-interest (POI) plays a vital role in improving user satisfaction of finding places and making visiting decisions. However, it is difficult to keep the POI database in sync with the real-world counterparts due to the dynamic nature of business changes. To alleviate this problem, we formulate and present a practical solution that jointly extracts POI mentions and identifies their coupled accessibility labels from unstructured text. We approach this task as a sequence tagging problem, where the goal is to produce <POI name, accessibility label> pairs from unstructured text. This task is challenging because of two main issues: (1) POI names are often newly-coined words so as to successfully register new entities or brands and (2) there may exist multiple pairs in the text, which necessitates dealing with one-to-many or many-to-one mapping to make each POI coupled with its accessibility label. To this end, we propose a Geographic-Enhanced and Dependency-guIded sequence Tagging (GEDIT) model to concurrently address the two challenges. First, to alleviate challenge #1, we develop a geographic-enhanced pre-trained model to learn the text representations. Second, to mitigate challenge #2, we apply a relational graph convolutional network to learn the tree node representations from the parsed dependency tree. Finally, we construct a neural sequence tagging model by integrating and feeding the previously pre-learned representations into a CRF layer. Extensive experiments conducted on a real-world dataset demonstrate the superiority and effectiveness of GEDIT. In addition, it has already been deployed in production at Baidu Maps. Statistics show that the proposed solution can save significant human effort and labor costs to deal with the same amount of documents, which confirms that it is a practical way for POI accessibility maintenance.



قيم البحث

اقرأ أيضاً

83 - Xukun Luo , Weijie Liu , Meng Ma 2020
Joint extraction refers to extracting triples, composed of entities and relations, simultaneously from the text with a single model. However, most existing methods fail to extract all triples accurately and efficiently from sentences with overlapping issue, i.e., the same entity is included in multiple triples. In this paper, we propose a novel scheme called Bidirectional Tree Tagging (BiTT) to label overlapping triples in text. In BiTT, the triples with the same relation category in a sentence are especially represented as two binary trees, each of which is converted into a word-level tags sequence to label each word. Based on BiTT scheme, we develop an end-to-end extraction framework to predict the BiTT tags and further extract triples efficiently. We adopt the Bi-LSTM and the BERT as the encoder in our framework respectively, and obtain promising results in public English as well as Chinese datasets.
In this paper, we explore the slot tagging with only a few labeled support sentences (a.k.a. few-shot). Few-shot slot tagging faces a unique challenge compared to the other few-shot classification problems as it calls for modeling the dependencies be tween labels. But it is hard to apply previously learned label dependencies to an unseen domain, due to the discrepancy of label sets. To tackle this, we introduce a collapsed dependency transfer mechanism into the conditional random field (CRF) to transfer abstract label dependency patterns as transition scores. In the few-shot setting, the emission score of CRF can be calculated as a words similarity to the representation of each label. To calculate such similarity, we propose a Label-enhanced Task-Adaptive Projection Network (L-TapNet) based on the state-of-the-art few-shot classification model -- TapNet, by leveraging label name semantics in representing labels. Experimental results show that our model significantly outperforms the strongest few-shot learning baseline by 14.64 F1 scores in the one-shot setting.
Evidence plays a crucial role in any biomedical research narrative, providing justification for some claims and refutation for others. We seek to build models of scientific argument using information extraction methods from full-text papers. We prese nt the capability of automatically extracting text fragments from primary research papers that describe the evidence presented in that papers figures, which arguably provides the raw material of any scientific argument made within the paper. We apply richly contextualized deep representation learning pre-trained on biomedical domain corpus to the analysis of scientific discourse structures and the extraction of evidence fragments (i.e., the text in the results section describing data presented in a specified subfigure) from a set of biomedical experimental research articles. We first demonstrate our state-of-the-art scientific discourse tagger on two scientific discourse tagging datasets and its transferability to new datasets. We then show the benefit of leveraging scientific discourse tags for downstream tasks such as claim-extraction and evidence fragment detection. Our work demonstrates the potential of using evidence fragments derived from figure spans for improving the quality of scientific claims by cataloging, indexing and reusing evidence fragments as independent documents.
Chinese word segmentation and dependency parsing are two fundamental tasks for Chinese natural language processing. The dependency parsing is defined on word-level. Therefore word segmentation is the precondition of dependency parsing, which makes de pendency parsing suffer from error propagation and unable to directly make use of the character-level pre-trained language model (such as BERT). In this paper, we propose a graph-based model to integrate Chinese word segmentation and dependency parsing. Different from previous transition-based joint models, our proposed model is more concise, which results in fewer efforts of feature engineering. Our graph-based joint model achieves better performance than previous joint models and state-of-the-art results in both Chinese word segmentation and dependency parsing. Besides, when BERT is combined, our model can substantially reduce the performance gap of dependency parsing between joint models and gold-segmented word-based models. Our code is publicly available at https://github.com/fastnlp/JointCwsParser.
In the pre deep learning era, part-of-speech tags have been considered as indispensable ingredients for feature engineering in dependency parsing. But quite a few works focus on joint tagging and parsing models to avoid error propagation. In contrast , recent studies suggest that POS tagging becomes much less important or even useless for neural parsing, especially when using character-based word representations. Yet there are not enough investigations focusing on this issue, both empirically and linguistically. To answer this, we design and compare three typical multi-task learning framework, i.e., Share-Loose, Share-Tight, and Stack, for joint tagging and parsing based on the state-of-the-art biaffine parser. Considering that it is much cheaper to annotate POS tags than parse trees, we also investigate the utilization of large-scale heterogeneous POS tag data. We conduct experiments on both English and Chinese datasets, and the results clearly show that POS tagging (both homogeneous and heterogeneous) can still significantly improve parsing performance when using the Stack joint framework. We conduct detailed analysis and gain more insights from the linguistic aspect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا