ترغب بنشر مسار تعليمي؟ اضغط هنا

Quadratic Discriminant Analysis by Projection

119   0   0.0 ( 0 )
 نشر من قبل Ruiyang Wu
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Discriminant analysis, including linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA), is a popular approach to classification problems. It is well known that LDA is suboptimal to analyze heteroscedastic data, for which QDA would be an ideal tool. However, QDA is less helpful when the number of features in a data set is moderate or high, and LDA and its variants often perform better due to their robustness against dimensionality. In this work, we introduce a new dimension reduction and classification method based on QDA. In particular, we define and estimate the optimal one-dimensional (1D) subspace for QDA, which is a novel hybrid approach to discriminant analysis. The new method can handle data heteroscedasticity with number of parameters equal to that of LDA. Therefore, it is more stable than the standard QDA and works well for data in moderate dimensions. We show an estimation consistency property of our method, and compare it with LDA, QDA, regularized discriminant analysis (RDA) and a few other competitors by simulated and real data examples.



قيم البحث

اقرأ أيضاً

63 - S. Dias , P. Brito , P. Amaral 2020
We address classification of distributional data, where units are described by histogram or interval-valued variables. The proposed approach uses a linear discriminant function where distributions or intervals are represented by quantile functions, u nder specific assumptions. This discriminant function allows defining a score for each unit, in the form of a quantile function, which is used to classify the units in two a priori groups, using the Mallows distance. There is a diversity of application areas for the proposed linear discriminant method. In this work we classify the airline companies operating in NY airports based on air time and arrival/departure delays, using a full year fights.
The use of quadratic discriminant analysis (QDA) or its regularized version (R-QDA) for classification is often not recommended, due to its well-acknowledged high sensitivity to the estimation noise of the covariance matrix. This becomes all the more the case in unbalanced data settings for which it has been found that R-QDA becomes equivalent to the classifier that assigns all observations to the same class. In this paper, we propose an improved R-QDA that is based on the use of two regularization parameters and a modified bias, properly chosen to avoid inappropriate behaviors of R-QDA in unbalanced settings and to ensure the best possible classification performance. The design of the proposed classifier builds on a refined asymptotic analysis of its performance when the number of samples and that of features grow large simultaneously, which allows to cope efficiently with the high-dimensionality frequently met within the big data paradigm. The performance of the proposed classifier is assessed on both real and synthetic data sets and was shown to be much better than what one would expect from a traditional R-QDA.
In supervised classification problems, the test set may contain data points belonging to classes not observed in the learning phase. Moreover, the same units in the test data may be measured on a set of additional variables recorded at a subsequent s tage with respect to when the learning sample was collected. In this situation, the classifier built in the learning phase needs to adapt to handle potential unknown classes and the extra dimensions. We introduce a model-based discriminant approach, Dimension-Adaptive Mixture Discriminant Analysis (D-AMDA), which can detect unobserved classes and adapt to the increasing dimensionality. Model estimation is carried out via a full inductive approach based on an EM algorithm. The method is then embedded in a more general framework for adaptive variable selection and classification suitable for data of large dimensions. A simulation study and an artificial experiment related to classification of adulterated honey samples are used to validate the ability of the proposed framework to deal with complex situations.
This paper proposes an incremental solution to Fast Subclass Discriminant Analysis (fastSDA). We present an exact and an approximate linear solution, along with an approximate kernelized variant. Extensive experiments on eight image datasets with dif ferent incremental batch sizes show the superiority of the proposed approach in terms of training time and accuracy being equal or close to fastSDA solution and outperforming other methods.
124 - Kun Zhou , Ker-Chau Li , 2019
The issue of honesty in constructing confidence sets arises in nonparametric regression. While optimal rate in nonparametric estimation can be achieved and utilized to construct sharp confidence sets, severe degradation of confidence level often happ ens after estimating the degree of smoothness. Similarly, for high-dimensional regression, oracle inequalities for sparse estimators could be utilized to construct sharp confidence sets. Yet the degree of sparsity itself is unknown and needs to be estimated, causing the honesty problem. To resolve this issue, we develop a novel method to construct honest confidence sets for sparse high-dimensional linear regression. The key idea in our construction is to separate signals into a strong and a weak group, and then construct confidence sets for each group separately. This is achieved by a projection and shrinkage approach, the latter implemented via Stein estimation and the associated Stein unbiased risk estimate. Our confidence set is honest over the full parameter space without any sparsity constraints, while its diameter adapts to the optimal rate of $n^{-1/4}$ when the true parameter is indeed sparse. Through extensive numerical comparisons, we demonstrate that our method outperforms other competitors with big margins for finite samples, including oracle methods built upon the true sparsity of the underlying model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا