ترغب بنشر مسار تعليمي؟ اضغط هنا

Assessing Cerebellar Disorders With Wearable Inertial Sensor Data Using Time-Frequency and Autoregressive Hidden Markov Model Approaches

66   0   0.0 ( 0 )
 نشر من قبل Karin Knudson
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

We use autoregressive hidden Markov models and a time-frequency approach to create meaningful quantitative descriptions of behavioral characteristics of cerebellar ataxias from wearable inertial sensor data gathered during movement. Wearable sensor data is relatively easily collected and provides direct measurements of movement that can be used to develop useful behavioral biomarkers. Sensitive and specific behavioral biomarkers for neurodegenerative diseases are critical to supporting early detection, drug development efforts, and targeted treatments. We create a flexible and descriptive set of features derived from accelerometer and gyroscope data collected from wearable sensors while participants perform clinical assessment tasks, and with them estimate disease status and severity. A short period of data collection ($<$ 5 minutes) yields enough information to effectively separate patients with ataxia from healthy controls with very high accuracy, to separate ataxia from other neurodegenerative diseases such as Parkinsons disease, and to give estimates of disease severity.



قيم البحث

اقرأ أيضاً

In this paper we solve the discrete time mean-variance hedging problem when asset returns follow a multivariate autoregressive hidden Markov model. Time dependent volatility and serial dependence are well established properties of financial time seri es and our model covers both. To illustrate the relevance of our proposed methodology, we first compare the proposed model with the well-known hidden Markov model via likelihood ratio tests and a novel goodness-of-fit test on the S&P 500 daily returns. Secondly, we present out-of-sample hedging results on S&P 500 vanilla options as well as a trading strategy based on theoretical prices, which we compare to simpler models including the classical Black-Scholes delta-hedging approach.
We develop clustering procedures for longitudinal trajectories based on a continuous-time hidden Markov model (CTHMM) and a generalized linear observation model. Specifically in this paper, we carry out finite and infinite mixture model-based cluster ing for a CTHMM and achieve inference using Markov chain Monte Carlo (MCMC). For a finite mixture model with prior on the number of components, we implement reversible-jump MCMC to facilitate the trans-dimensional move between different number of clusters. For a Dirichlet process mixture model, we utilize restricted Gibbs sampling split-merge proposals to expedite the MCMC algorithm. We employ proposed algorithms to the simulated data as well as a real data example, and the results demonstrate the desired performance of the new sampler.
This paper presents an algorithm that makes novel use of distance measurements alongside a constrained Kalman filter to accurately estimate pelvis, thigh, and shank kinematics for both legs during walking and other body movements using only three wea rable inertial measurement units (IMUs). The distance measurement formulation also assumes hinge knee joint and constant body segment length, helping produce estimates that are near or in the constraint space for better estimator stability. Simulated experiments shown that inter-IMU distance measurement is indeed a promising new source of information to improve the pose estimation of inertial motion capture systems under a reduced sensor count configuration. Furthermore, experiments show that performance improved dramatically for dynamic movements even at high noise levels (e.g., $sigma_{dist} = 0.2$ m), and that acceptable performance for normal walking was achieved at $sigma_{dist} = 0.1$ m. Nevertheless, further validation is recommended using actual distance measurement sensors.
1. Movement is the primary means by which animals obtain resources and avoid hazards. Most movement exhibits directional bias that is related to environmental features (taxis), such as the location of food patches, predators, ocean currents, or wind. Numerous behaviours with directional bias can be characterized by maintaining orientation at an angle relative to the environmental stimuli (menotaxis), including navigation relative to sunlight or magnetic fields and energy-conserving flight across wind. However, no statistical methods exist to flexibly classify and characterise such directional bias. 2. We propose a biased correlated random walk model that can identify menotactic behaviours by predicting turning angle as a trade-off between directional persistence and directional bias relative to environmental stimuli without making a priori assumptions about the angle of bias. We apply the model within the framework of a multi-state hidden Markov model (HMM) and describe methods to remedy information loss associated with coarse environmental data to improve the classification and parameterization of directional bias. 3. Using simulation studies, we illustrate how our method more accurately classifies behavioural states compared to conventional correlated random walk HMMs that do not incorporate directional bias. We illustrate the application of these methods by identifying cross wind olfactory foraging and drifting behaviour mediated by wind-driven sea ice drift in polar bears (Ursus maritimus) from movement data collected by satellite telemetry. 4. The extensions we propose can be readily applied to movement data to identify and characterize behaviours with directional bias toward any angle, and open up new avenues to investigate more mechanistic relationships between animal movement and the environment.
The identification of factors associated with mental and behavioral disorders in early childhood is critical both for psychopathology research and the support of primary health care practices. Motivated by the Millennium Cohort Study, in this paper w e study the effect of a comprehensive set of covariates on childrens emotional and behavioural trajectories in England. To this end, we develop a Quantile Mixed Hidden Markov Model for joint estimation of multiple quantiles in a linear regression setting for multivariate longitudinal data. The novelty of the proposed approach is based on the Multivariate Asymmetric Laplace distribution which allows to jointly estimate the quantiles of the univariate conditional distributions of a multivariate response, accounting for possible correlation between the outcomes. Sources of unobserved heterogeneity and serial dependency due to repeated measures are modeled through the introduction of individual-specific, time-constant random coefficients and time-varying parameters evolving over time with a Markovian structure, respectively. The inferential approach is carried out through the construction of a suitable Expectation-Maximization algorithm without parametric assumptions on the random effects distribution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا