ترغب بنشر مسار تعليمي؟ اضغط هنا

The Importance of Autonomous Driving Using 5G Technology

73   0   0.0 ( 0 )
 نشر من قبل Yuanzhe Jin
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

The three keys to autonomous driving are sensors, data integration, and 100% safety decisions. In the past, due to the high latency and low reliability of the network, many decisions had to be made locally in the vehicle. This puts high demands on the vehicle itself, which results in the dilatory commercialization of automatic driving. With the advent of 5G, these situations will be greatly improved. In this paper, we present the improvements that 5G technology brings to autonomous vehicles especially in terms of latency and reliability amongst the multitude of other factors. The paper analyzes the specific areas where 5G can improve for autonomous vehicles and Intelligent Transport Systems in general (ITS) and looks forward to the application of 5G technology in the future.



قيم البحث

اقرأ أيضاً

Vehicle odometry is an essential component of an automated driving system as it computes the vehicles position and orientation. The odometry module has a higher demand and impact in urban areas where the global navigation satellite system (GNSS) sign al is weak and noisy. Traditional visual odometry methods suffer from the diverse illumination status and get disparities during pose estimation, which results in significant errors as the error accumulates. Odometry using light detection and ranging (LiDAR) devices has attracted increasing research interest as LiDAR devices are robust to illumination variations. In this survey, we examine the existing LiDAR odometry methods and summarize the pipeline and delineate the several intermediate steps. Additionally, the existing LiDAR odometry methods are categorized by their correspondence type, and their advantages, disadvantages, and correlations are analyzed across-category and within-category in each step. Finally, we compare the accuracy and the running speed among these methodologies evaluated over the KITTI odometry dataset and outline promising future research directions.
Autonomous cars can perform poorly for many reasons. They may have perception issues, incorrect dynamics models, be unaware of obscure rules of human traffic systems, or follow certain rules too conservatively. Regardless of the exact failure mode of the car, often human drivers around the car are behaving correctly. For example, even if the car does not know that it should pull over when an ambulance races by, other humans on the road will know and will pull over. We propose to make socially cohesive cars that leverage the behavior of nearby human drivers to act in ways that are safer and more socially acceptable. The simple intuition behind our algorithm is that if all the humans are consistently behaving in a particular way, then the autonomous car probably should too. We analyze the performance of our algorithm in a variety of scenarios and conduct a user study to assess peoples attitudes towards socially cohesive cars. We find that people are surprisingly tolerant of mistakes that cohesive cars might make in order to get the benefits of driving in a car with a safer, or even just more socially acceptable behavior.
376 - Xin Zheng , Jianke Zhu 2021
LiDAR odometry plays an important role in self-localization and mapping for autonomous navigation, which is usually treated as a scan registration problem. Although having achieved promising performance on KITTI odometry benchmark, the conventional s earching tree-based approach still has the difficulty in dealing with the large scale point cloud efficiently. The recent spherical range image-based method enjoys the merits of fast nearest neighbor search by spherical mapping. However, it is not very effective to deal with the ground points nearly parallel to LiDAR beams. To address these issues, we propose a novel efficient LiDAR odometry approach by taking advantage of both non-ground spherical range image and birds-eye-view map for ground points. Moreover, a range adaptive method is introduced to robustly estimate the local surface normal. Additionally, a very fast and memory-efficient model update scheme is proposed to fuse the points and their corresponding normals at different time-stamps. We have conducted extensive experiments on KITTI odometry benchmark, whose promising results demonstrate that our proposed approach is effective.
Designing or learning an autonomous driving policy is undoubtedly a challenging task as the policy has to maintain its safety in all corner cases. In order to secure safety in autonomous driving, the ability to detect hazardous situations, which can be seen as an out-of-distribution (OOD) detection problem, becomes crucial. However, most conventional datasets only provide expert driving demonstrations, although some non-expert or uncommon driving behavior data are needed to implement a safety guaranteed autonomous driving platform. To this end, we present a novel dataset called the R3 Driving Dataset, composed of driving data with different qualities. The dataset categorizes abnormal driving behaviors into eight categories and 369 different detailed situations. The situations include dangerous lane changes and near-collision situations. To further enlighten how these abnormal driving behaviors can be detected, we utilize different uncertainty estimation and anomaly detection methods to the proposed dataset. From the results of the proposed experiment, it can be inferred that by using both uncertainty estimation and anomaly detection, most of the abnormal cases in the proposed dataset can be discriminated. The dataset of this paper can be downloaded from https://rllab-snu.github.io/projects/R3-Driving-Dataset/doc.html.
We develop optimal control strategies for Autonomous Vehicles (AVs) that are required to meet complex specifications imposed by traffic laws and cultural expectations of reasonable driving behavior. We formulate these specifications as rules, and spe cify their priorities by constructing a priority structure. We propose a recursive framework, in which the satisfaction of the rules in the priority structure are iteratively relaxed based on their priorities. Central to this framework is an optimal control problem, where convergence to desired states is achieved using Control Lyapunov Functions (CLFs), and safety is enforced through Control Barrier Functions (CBFs). We also show how the proposed framework can be used for after-the-fact, pass / fail evaluation of trajectories - a given trajectory is rejected if we can find a controller producing a trajectory that leads to less violation of the rule priority structure. We present case studies with multiple driving scenarios to demonstrate the effectiveness of the proposed framework.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا