ﻻ يوجد ملخص باللغة العربية
Concussion and repeated exposure to mild traumatic brain injury are risks for athletes in many sports. While direct head impacts are analyzed to improve the detection and awareness of head acceleration events so that an athletes brain health can be appropriately monitored and treated. However, head accelerations can also be induced by impacts with little or no head involvement. In this work we evaluated if impacts that do not involve direct head contact, such as being pushed in the torso, can be sufficient in collegiate American football to induce head accelerations comparable to direct head impacts. Datasets of impacts with and without direct head contact were collected and compared. These datasets were gathered using a state-of-the-art impact detection algorithm embedded in an instrumented mouthguard to record head kinematics. Video analysis was used to differentiate between impact types. In total, 15 impacts of each type were used in comparison, with clear video screenshots available to distinguish each impact type. Analysis of the kinematics showed that the impacts without direct head contact achieved similar levels of linear and angular accelerations during impact compared to those from direct head impacts. Finite element analyses using the median and peak kinematic signals were used to calculate maximum principal strain of the brain. Statistical analysis revealed that no significant difference was found between the two datasets based on a Bonferroni-adjusted p-value threshold of 0.017 , with the exception of peak linear acceleration. Impacts without direct head contact showed higher mean values of peak linear acceleration values of 17.6 g compared to the direct-head impact mean value of 6.1g. These results indicated that impacts other than direct head impacts could still produce meaningful kinematic loads in the head and as such should be included in athlete health monitoring.
Head-related impulse responses (HRIRs) are subject-dependent and direction-dependent filters used in spatial audio synthesis. They describe the scattering response of the head, torso, and pinnae of the subject. We propose a structural factorization o
Multi-head attention plays a crucial role in the recent success of Transformer models, which leads to consistent performance improvements over conventional attention in various applications. The popular belief is that this effectiveness stems from th
When people deliver a speech, they naturally move heads, and this rhythmic head motion conveys prosodic information. However, generating a lip-synced video while moving head naturally is challenging. While remarkably successful, existing works either
In this work we present a new physics-informed machine learning model that can be used to analyze kinematic data from an instrumented mouthguard and detect impacts to the head. Monitoring player impacts is vitally important to understanding and prote
Because of the relatively rigid coupling between the upper dentition and the skull, instrumented mouthguards have been shown to be a viable way of measuring head impact kinematics for assisting in understanding the underlying biomechanics of concussi