ترغب بنشر مسار تعليمي؟ اضغط هنا

Regularity of integral closure of powers of edge ideals

131   0   0.0 ( 0 )
 نشر من قبل Arvind Kumar Dr.
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this article, we study the regularity of integral closure of powers of edge ideals. We obtain a lower bound for the regularity of integral closure of powers of edge ideals in terms of induced matching number of graphs. We prove that the regularity of integral closure of powers of edge ideals of graphs with at most two odd cycles is the same as the regularity of their powers.



قيم البحث

اقرأ أيضاً

161 - Douglas A. Leonard 2012
The Qth-power algorithm for computing structured global presentations of integral closures of affine domains over finite fields is modified to compute structured presentations of integral closures of ideals in affine domains over finite fields relati ve to a local monomial ordering. A non-homogeneous version of the standard (homogeneous) Rees algebra is introduced as well.
In this article, we prove that for several classes of graphs, the Castelnuovo-Mumford regularity of symbolic powers of their edge ideals coincide with that of their ordinary powers.
We compute the Betti numbers for all the powers of initial and final lexsegment edge ideals. For the powers of the edge ideal of an anti-$d-$path, we prove that they have linear quotients and we characterize the normally torsion-free ideals. We deter mine a class of non-squarefree ideals, arising from some particular graphs, which are normally torsion-free.
134 - Hiroju Kanno 2020
In this paper, we define (im, reg)-invariant extension of graphs and propose a new approach for Nevo and Peevas conjecture which said that for any gap-free graph $G$ with $reg(I(G)) = 3$ and for any $k geq 2$, $I(G)^k$ has a linear resolution. More over, we consider new conjectures related to the regularity of powers of edge ideals of gap-free graphs.
111 - Li Xu , Guangjun Zhu , Hong Wang 2019
In this paper we provide some exact formulas for projective dimension and the regularity of powers of edge ideals of vertex-weighted rooted forests. These formulas are functions of the weight of the vertices and the number of edges. We also give some examples to show that these formulas are related to direction selection and the assumptions about rooted forest such that $w(x)geq 2$ if $d(x) eq 1$ cannot be dropped.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا