ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparison of simulated neutrino emission models with data on Supernova 1987A

65   0   0.0 ( 0 )
 نشر من قبل Jackson Olsen
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compare models of supernova (SN) neutrino emission with the Kamiokande II data on SN 1987A using the Bayesian approach. These models are taken from simulations and are representative of current 1D SN models. We find that models with a brief accretion phase of neutrino emission are the most favored. This result is not affected by varying the overall flux normalization or considering neutrino oscillations. We also check the compatibility of the best-fit models with the data.



قيم البحث

اقرأ أيضاً

The Fermi $gamma$-ray space telescope reported the observation of several Galactic supernova remnants recently, with the $gamma$-ray spectra well described by hadronic $pp$ collisions. The possible neutrino emissions from these Fermi detected superno va remnants are discussed in this work, assuming the hadronic origin of the $gamma$-ray emission. The muon event rates induced by the neutrinos from these supernova remnants on typical km$^3$ neutrino telescopes, such as the IceCube and the KM3NeT, are calculated. The results show that for most of these supernova remnants the neutrino signals are too weak to be detected by the on-going or up-coming neutrino experiment. Only for the TeV bright sources RX J1713.7-3946 and possibly W28 the neutrino signals can be comparable with the atmospheric background in the TeV region, if the protons can be accelerated to very high energies. The northern hemisphere based neutrino telescope might detect the neutrinos from these two sources.
A dense neutrino medium such as that inside a core-collapse supernova can experience collective flavor conversion or oscillations because of the neutral-current weak interaction among the neutrinos. This phenomenon has been studied in a restricted, s tationary supernova model which possesses the (spatial) spherical symmetry about the center of the supernova and the (directional) axial symmetry around the radial direction. Recently it has been shown that these spatial and directional symmetries can be broken spontaneously by collective neutrino oscillations. In this paper we analyze the neutrino flavor instabilities in a time-dependent supernova model. Our results show that collective neutrino oscillations start at approximately the same radius in both the stationary and time-dependent supernova models unless there exist very rapid variations in local physical conditions on timescales of a few microseconds or shorter. Our results also suggest that collective neutrino oscillations can vary rapidly with time in the regimes where they do occur which need to be studied in time-dependent supernova models.
74 - R. Bollig 2017
Muons can be created in nascent neutron stars (NSs) due to the high electron chemical potentials and the high temperatures. Because of their relatively lower abundance compared to electrons, their role has so far been ignored in numerical simulations of stellar core collapse and NS formation. However, the appearance of muons softens the NS equation of state, triggers faster NS contraction and thus leads to higher luminosities and mean energies of the emitted neutrinos. This strengthens the postshock heating by neutrinos and can facilitate explosions by the neutrino-driven mechanism.
202 - Hasan Yuksel 2005
The time-integrated luminosity and average energy of the neutrino emission spectrum are essential diagnostics of core-collapse supernovae. The SN 1987A electron antineutrino observations by the Kamiokande-II and IMB detectors are only roughly consist ent with each other and theory. Using new measurements of the star formation rate history, we reinterpret the Super-Kamiokande upper bound on the electron antineutrino flux from all past supernovae as an excluded region in neutrino emission parameter space. A gadolinium-enhanced Super-Kamiokande should be able to jointly measure these parameters, and a future megaton-scale detector would enable precision studies.
During the first few hundred days after the explosion, core-collapse supernovae (SNe) emit down-scattered X-rays and gamma-rays originating from radioactive line emissions, primarily from the $^{56}$Ni $rightarrow$ $^{56}$Co $rightarrow$ $^{56}$Fe ch ain. We use SN models based on three-dimensional neutrino-driven explosion simulations of single stars and mergers to compute this emission and compare the predictions with observations of SN 1987A. A number of models are clearly excluded, showing that high-energy emission is a powerful way of discriminating between models. The best models are almost consistent with the observations, but differences that cannot be matched by a suitable choice of viewing angle are evident. Therefore, our self-consistent models suggest that neutrino-driven explosions are able to produce, in principle, sufficient mixing, although remaining discrepancies may require small changes to the progenitor structures. The soft X-ray cutoff is primarily determined by the metallicity of the progenitor envelope. The main effect of asymmetries is to vary the flux level by a factor of ${sim}$3. For the more asymmetric models, the shapes of the light curves also change. In addition to the models of SN 1987A, we investigate two models of Type II-P SNe and one model of a stripped-envelope Type IIb SN. The Type II-P models have similar observables as the models of SN 1987A, but the stripped-envelope SN model is significantly more luminous and evolves faster. Finally, we make simple predictions for future observations of nearby SNe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا