ترغب بنشر مسار تعليمي؟ اضغط هنا

Augmenting Slot Values and Contexts for Spoken Language Understanding with Pretrained Models

86   0   0.0 ( 0 )
 نشر من قبل Haitao Lin
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Spoken Language Understanding (SLU) is one essential step in building a dialogue system. Due to the expensive cost of obtaining the labeled data, SLU suffers from the data scarcity problem. Therefore, in this paper, we focus on data augmentation for slot filling task in SLU. To achieve that, we aim at generating more diverse data based on existing data. Specifically, we try to exploit the latent language knowledge from pretrained language models by finetuning them. We propose two strategies for finetuning process: value-based and context-based augmentation. Experimental results on two public SLU datasets have shown that compared with existing data augmentation methods, our proposed method can generate more diverse sentences and significantly improve the performance on SLU.



قيم البحث

اقرأ أيضاً

98 - Zijian Zhao , Su Zhu , Kai Yu 2019
Spoken Language Understanding (SLU) converts user utterances into structured semantic representations. Data sparsity is one of the main obstacles of SLU due to the high cost of human annotation, especially when domain changes or a new domain comes. I n this work, we propose a data augmentation method with atomic templates for SLU, which involves minimum human efforts. The atomic templates produce exemplars for fine-grained constituents of semantic representations. We propose an encoder-decoder model to generate the whole utterance from atomic exemplars. Moreover, the generator could be transferred from source domains to help a new domain which has little data. Experimental results show that our method achieves significant improvements on DSTC 2&3 dataset which is a domain adaptation setting of SLU.
Paraphrase generation has benefited extensively from recent progress in the designing of training objectives and model architectures. However, previous explorations have largely focused on supervised methods, which require a large amount of labeled d ata that is costly to collect. To address this drawback, we adopt a transfer learning approach and propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting. Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking (DB). To enforce a surface form dissimilar from the input, whenever the language model emits a token contained in the source sequence, DB prevents the model from outputting the subsequent source token for the next generation step. We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair (QQP) and the ParaNMT datasets and is robust to domain shift between the two datasets of distinct distributions. We also demonstrate that our model transfers to paraphrasing in other languages without any additional finetuning.
To obtain high-quality sentence embeddings from pretrained language models (PLMs), they must either be augmented with additional pretraining objectives or finetuned on a large set of labeled text pairs. While the latter approach typically outperforms the former, it requires great human effort to generate suitable datasets of sufficient size. In this paper, we show how large PLMs can be leveraged to obtain high-quality embeddings without requiring any labeled data, finetuning or modifications to the pretraining objective: We utilize the generative abilities of PLMs to generate entire datasets of labeled text pairs from scratch, which can then be used for regular finetuning of much smaller models. Our fully unsupervised approach outperforms strong baselines on several English semantic textual similarity datasets.
127 - Zhiyuan Guo , Yuexin Li , Guo Chen 2021
Spoken dialogue systems such as Siri and Alexa provide great convenience to peoples everyday life. However, current spoken language understanding (SLU) pipelines largely depend on automatic speech recognition (ASR) modules, which require a large amou nt of language-specific training data. In this paper, we propose a Transformer-based SLU system that works directly on phones. This acoustic-based SLU system consists of only two blocks and does not require the presence of ASR module. The first block is a universal phone recognition system, and the second block is a Transformer-based language model for phones. We verify the effectiveness of the system on an intent classification dataset in Mandarin Chinese.
Visually-grounded models of spoken language understanding extract semantic information directly from speech, without relying on transcriptions. This is useful for low-resource languages, where transcriptions can be expensive or impossible to obtain. Recent work showed that these models can be improved if transcriptions are available at training time. However, it is not clear how an end-to-end approach compares to a traditional pipeline-based approach when one has access to transcriptions. Comparing different strategies, we find that the pipeline approach works better when enough text is available. With low-resource languages in mind, we also show that translations can be effectively used in place of transcriptions but more data is needed to obtain similar results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا