ﻻ يوجد ملخص باللغة العربية
The natural indirect effect (NIE) and mediation proportion (MP) are two measures of primary interest in mediation analysis. The standard approach for estimating NIE and MP is through the product method, which involves a model for the outcome conditional on the mediator and exposure and another model describing the exposure-mediator relationship. The purpose of this article is to comprehensively develop and investigate the finite-sample performance of NIE and MP estimators via the product method. With four common data types, we propose closed-form interval estimators via the theory of estimating equations and multivariate delta method, and evaluate its empirical performance relative to the bootstrap approach. In addition, we have observed that the rare outcome assumption is frequently invoked to approximate the NIE and MP with a binary outcome, although this approximation may lead to non-negligible bias when the outcome is common. We therefore introduce the exact expressions for NIE and MP with a binary outcome without the rare outcome assumption and compare its performance with the approximate estimators. Based upon these theoretical developments and empirical studies, we offer several practical recommendations to inform practice. An R package mediateP is developed to implement the methods for point and variance estimation discussed in this paper.
As a classic parameter from the binomial distribution, the binomial proportion has been well studied in the literature owing to its wide range of applications. In contrast, the reciprocal of the binomial proportion, also known as the inverse proporti
Causal mediation analysis aims to characterize an exposures effect on an outcome and quantify the indirect effect that acts through a given mediator or a group of mediators of interest. With the increasing availability of measurements on a large numb
We study the problem of sparse signal detection on a spatial domain. We propose a novel approach to model continuous signals that are sparse and piecewise smooth as product of independent Gaussian processes (PING) with a smooth covariance kernel. The
Recent studies suggest that the microbiome can be an important mediator in the effect of a treatment on an outcome. Microbiome data generated from sequencing experiments contain the relative abundance of a large number of microbial taxa with their ev
Standard estimators of the global average treatment effect can be biased in the presence of interference. This paper proposes regression adjustment estimators for removing bias due to interference in Bernoulli randomized experiments. We use a fitted