ﻻ يوجد ملخص باللغة العربية
In this paper, $S$ denotes a hyperbolic surface homeomorphic to a punctured torus or a pairs of pants. Our interest is the study of emph{textbf{combinatorial $k$-systoles}} that is geodesics with self-intersection number greater than $k$ and with minimal combinatorial length. We show that the maximal intersection number $I_k$ of combinatorial $k$-systoles grows like $k$ and $underset{krightarrow+infty}{limsup}(I_k(S)-k)=+infty$. This answer -- in the case of a pairs of pants and a punctured torus -- a weak version of Erlandsson-Palier conjecture, originally stated for the geometric length.
Given a hyperbolic surface, the set of all closed geodesics whose length is minimal form a graph on the surface, in fact a so-called fat graph, which we call the systolic graph. We study which fat graphs are systolic graphs for some surface (we call
We show that the $4d$ ${cal N}=1$ $SU(3)$ $N_f=6$ SQCD is the model obtained when compactifying the rank one E-string theory on a three punctured sphere (a trinion) with a particular value of flux. The $SU(6)times SU(6)times U(1)$ global symmetry of
In this article we explore the relationship between the systole and the diameter of closed hyperbolic orientable surfaces. We show that they satisfy a certain inequality, which can be used to deduce that their ratio has a (genus dependent) upper bound.
We investigate the terms arising in an identity for hyperbolic surfaces proved by Luo and Tan, namely showing that they vary monotonically in terms of lengths and that they verify certain convexity properties. Using these properties, we deduce two re
Given a topological orientable surface of finite or infinite type equipped with a pair of pants decomposition $mathcal{P}$ and given a base complex structure $X$ on $S$, there is an associated deformation space of complex structures on $S$, which we