ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy dependence of underlying-event observables from RHIC to LHC energies

122   0   0.0 ( 0 )
 نشر من قبل Antonio Ortiz
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Antonio Ortiz




اسأل ChatGPT حول البحث

A study of the charged-particle density (number density) in the transverse region of the di-hadron correlations exploiting the existing pp and p$bar{rm p}$ data from RHIC to LHC energies is reported. This region has contributions from the Underlying Event (UE) as well as from Initial- and Final-State Radiation (ISR-FSR). Based on the data, a two-component model is built. This has the functional form $propto s^{0.27}+0.14log(s)$, where the logarithmic (power-law) term describes the component more sensitive to the ISR-FSR (UE) contribution. The model describes the data from RHIC to LHC energies, the extrapolation to higher energies indicates that at around $sqrt{s} approx 100$ TeV the number density associated to UE will match that from ISR-FSR. Although this behaviour is not predicted by PYTHIA~8.244, the power-law behaviour of the UE contribution is consistent with the energy dependence of the parameter that regulates Multiparton Interactions. Using simulations, KNO-like scaling properties of the multiplicity distributions in the regions sensitive to either UE or ISR-FSR are also discussed. The results presented here can be helpful to constrain QCD-inspired Monte Carlo models at the Future Circular Collider energies, as well as to characterize the UE-based event classifiers which are currently used at the LHC.



قيم البحث

اقرأ أيضاً

In this work, we study electrical conductivity and Hall conductivity in the presence of electromagnetic field using Relativistic Boltzmann Transport Equation with Relaxation Time Approximation. We evaluate these transport coefficients for a strongly interacting system consisting of nearly massless particles which is similar to Quark-Gluon Plasma and is likely to be formed in heavy-ion collision experiments. We explicitly include the effects of magnetic field in the calculation of relaxation time. The values of magnetic field are obtained for all the centrality classes of Au+Au collisions at $sqrt {s_{rm NN}} =$ 200 GeV and Pb+Pb collisions at $sqrt {s_{rm NN}} =$ 2.76 TeV. We consider the three lightest quark flavors and their corresponding antiparticles in this study. We estimate the temperature dependence of the electrical conductivity and Hall conductivity for different strengths of magnetic field. We observe a significant dependence of temperature on electrical and Hall conductivity in the presence of magnetic field.
The heavy quarks (HQs) are unique probe of the hot QCD matter properties and their dynamics is coupled to the locally thermalized expanding quark gluon plasma. We present here a novel study of the event by event correlations between light and heavy f lavour flow harmonics at LHC energy within a transport approach. Interaction between heavy quarks and light quarks have been taken into account exploring the impact of different temperature dependence of the transport coefficients $D_s$ and $Gamma$. Our study indicates that $v^{heavy}_n-v^{light}_n$ correlation and the relative fluctuations of anisotropic flows, $sigma_{v_{n}}/langle v_n rangle$, are novel observables to understand the heavy quark-bulk interaction and are sensitive to the temperature dependence even to moderate differences of $D_s(T)$, or $Gamma(T)$. Hence a comparison of such new observables for HQ to upcoming experimental data at both RHIC and LHC can put further constraints on heavy quark transport coefficients and in particular on its temperature dependence toward a solid comparison between the phenomenological determination and the lattice QCD calculations.
89 - A. Baltz , G. Baur , S.J. Brodsky 2007
We present the mini-proceedings of the workshop on ``Photoproduction at collider energies: from RHIC and HERA to the LHC held at the European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*, Trento) from January 15 to 19, 20 07. The workshop gathered both theorists and experimentalists to discuss the current status of investigations of high-energy photon-induced processes at different colliders (HERA, RHIC, and Tevatron) as well as preparations for extension of these studies at the LHC. The main physics topics covered were: (i) small-$x$ QCD in photoproduction studies with protons and in electromagnetic (aka. ultraperipheral) nucleus-nucleus collisions, (ii) hard diffraction physics at hadron colliders, and (iii) photon-photon collisions at very high energies: electroweak and beyond the Standard Model processes. These mini-proceedings consist of an introduction and short summaries of the talks presented at the meeting.
The interpretation of experimental results at RHIC and in the future also at LHC requires very reliable and realistic models. Considerable effort has been devoted to the development of such models during the past decade, many of them being heavily used in order to analyze data. It is the purpose of this paper to point out serious inconsistencies in the above-mentioned approaches. We will demonstrate that requiring theoretical self-consistency reduces the freedom in modeling high energy nuclear scattering enormously. We will introduce a fully self-consistent formulation of the multiple-scattering scheme in the framework of a Gribov-Regge type effective theory. In addition, we develop new computational techniques which allow for the first time a satisfactory solution of the problem in the sense that calculations of observable quantities can be done strictly within a self-consistent formalism.
285 - M. Monteno 2011
The stochastic dynamics of c and b quarks in the fireball created in nucleus-nucleus collisions at RHIC and LHC is studied employing a relativistic Langevin equation, based on a picture of multiple uncorrelated random collisions with the medium. Heav y-quark transport coefficients are evaluated within a pQCD approach, with a proper HTL resummation of medium effects for soft scatterings. The Langevin equation is embedded in a multi-step setup developed to study heavy-flavor observables in pp and AA collisions, starting from a NLO pQCD calculation of initial heavy-quark yields, complemented in the nuclear case by shadowing corrections, k_T-broadening and nuclear geometry effects. Then, only for AA collisions, the Langevin equation is solved numerically in a background medium described by relativistic hydrodynamics. Finally, the propagated heavy quarks are made hadronize and decay into electrons. Results for the nuclear modification factor R_AA of heavy-flavor hadrons and electrons from their semi-leptonic decays are provided, both for RHIC and LHC beam energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا