ﻻ يوجد ملخص باللغة العربية
We present a classical algorithm to find approximate solutions to instances of quadratic unconstrained binary optimisation. The algorithm can be seen as an analogue of quantum annealing under the restriction of a product state space, where the dynamical evolution in quantum annealing is replaced with a gradient-descent based method. This formulation is able to quickly find high-quality solutions to large-scale problem instances, and can naturally be accelerated by dedicated hardware such as graphics processing units. We benchmark our approach for large scale problem instances with tuneable hardness and planted solutions. We find that our algorithm offers a similar performance to current state of the art approaches within a comparably simple gradient-based and non-stochastic setting.
We propose an algorithm inspired by optical coherent Ising machines to solve the problem of polynomial unconstrained binary optimisation (PUBO). We benchmark the proposed algorithm against existing PUBO algorithms on the extended Sherrington-Kirkpatr
The Quadratic Unconstrained Binary Optimization (QUBO) modeling and solution framework is a requirement for quantum and digital annealers. However optimality for QUBO problems of any practical size is extremely difficult to achieve. In order to incor
The Fujitsu Digital Annealer (DA) is designed to solve fully connected quadratic unconstrained binary optimization (QUBO) problems. It is implemented on application-specific CMOS hardware and currently solves problems of up to 1024 variables. The DAs
In this paper we focus on the unconstrained binary quadratic optimization model, maximize x^t Qx, x binary, and consider the problem of identifying optimal solutions that are robust with respect to perturbations in the Q matrix.. We are motivated to
Quadratic Unconstrained Binary Optimization models are useful for solving a diverse range of optimization problems. Constraints can be added by incorporating quadratic penalty terms into the objective, often with the introduction of slack variables n