ترغب بنشر مسار تعليمي؟ اضغط هنا

GGP: A Graph-based Grouping Planner for Explicit Control of Long Text Generation

88   0   0.0 ( 0 )
 نشر من قبل Shaobo Cui
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Existing data-driven methods can well handle short text generation. However, when applied to the long-text generation scenarios such as story generation or advertising text generation in the commercial scenario, these methods may generate illogical and uncontrollable texts. To address these aforementioned issues, we propose a graph-based grouping planner(GGP) following the idea of first-plan-then-generate. Specifically, given a collection of key phrases, GGP firstly encodes these phrases into an instance-level sequential representation and a corpus-level graph-based representation separately. With these two synergic representations, we then regroup these phrases into a fine-grained plan, based on which we generate the final long text. We conduct our experiments on three long text generation datasets and the experimental results reveal that GGP significantly outperforms baselines, which proves that GGP can control the long text generation by knowing how to say and in what order.



قيم البحث

اقرأ أيضاً

Long text generation is an important but challenging task.The main problem lies in learning sentence-level semantic dependencies which traditional generative models often suffer from. To address this problem, we propose a Multi-hop Reasoning Generati on (MRG) approach that incorporates multi-hop reasoning over a knowledge graph to learn semantic dependencies among sentences. MRG consists of twoparts, a graph-based multi-hop reasoning module and a path-aware sentence realization module. The reasoning module is responsible for searching skeleton paths from a knowledge graph to imitate the imagination process in the human writing for semantic transfer. Based on the inferred paths, the sentence realization module then generates a complete sentence. Unlike previous black-box models, MRG explicitly infers the skeleton path, which provides explanatory views tounderstand how the proposed model works. We conduct experiments on three representative tasks, including story generation, review generation, and product description generation. Automatic and manual evaluation show that our proposed method can generate more informative and coherentlong text than strong baselines, such as pre-trained models(e.g. GPT-2) and knowledge-enhanced models.
The task of graph-to-text generation aims at producing sentences that preserve the meaning of input graphs. As a crucial defect, the current state-of-the-art models may mess up or even drop the core structural information of input graphs when generat ing outputs. We propose to tackle this problem by leveraging richer training signals that can guide our model for preserving input information. In particular, we introduce two types of autoencoding losses, each individually focusing on different aspects (a.k.a. views) of input graphs. The losses are then back-propagated to better calibrate our model via multi-task training. Experiments on two benchmarks for graph-to-text generation show the effectiveness of our approach over a state-of-the-art baseline. Our code is available at url{http://github.com/Soistesimmer/AMR-multiview}.
Standard multi-task benchmarks are essential for driving the progress of general pretraining models to generalize to various downstream tasks. However, existing benchmarks such as GLUE and GLGE tend to focus on short text understanding and generation tasks, without considering long text modeling, which requires many distinct capabilities such as modeling long-range commonsense and discourse relations, as well as the coherence and controllability of generation. The lack of standardized benchmarks makes it difficult to fully evaluate these capabilities of a model and fairly compare different models, especially Chinese pretraining models. Therefore, we propose LOT, a benchmark including two understanding and two generation tasks for Chinese long text modeling evaluation. We construct the datasets for the tasks based on various kinds of human-written Chinese stories. Besides, we release an encoder-decoder Chinese long text pretraining model named LongLM with up to 1 billion parameters. We pretrain LongLM on 120G Chinese novels with two generative tasks including text infilling and conditional continuation. Extensive experiments on LOT demonstrate that LongLM matches the performance of similar-sized pretraining models on the understanding tasks and outperforms strong baselines substantially on the generation tasks.
133 - Pei Ke , Haozhe Ji , Yu Ran 2021
Existing pre-trained models for knowledge-graph-to-text (KG-to-text) generation simply fine-tune text-to-text pre-trained models such as BART or T5 on KG-to-text datasets, which largely ignore the graph structure during encoding and lack elaborate pr e-training tasks to explicitly model graph-text alignments. To tackle these problems, we propose a graph-text joint representation learning model called JointGT. During encoding, we devise a structure-aware semantic aggregation module which is plugged into each Transformer layer to preserve the graph structure. Furthermore, we propose three new pre-training tasks to explicitly enhance the graph-text alignment including respective text / graph reconstruction, and graph-text alignment in the embedding space via Optimal Transport. Experiments show that JointGT obtains new state-of-the-art performance on various KG-to-text datasets.
Graph-to-text generation aims to generate fluent texts from graph-based data. In this paper, we investigate two recently proposed pretrained language models (PLMs) and analyze the impact of different task-adaptive pretraining strategies for PLMs in g raph-to-text generation. We present a study across three graph domains: meaning representations, Wikipedia knowledge graphs (KGs) and scientific KGs. We show that the PLMs BART and T5 achieve new state-of-the-art results and that task-adaptive pretraining strategies improve their performance even further. In particular, we report new state-of-the-art BLEU scores of 49.72 on LDC2017T10, 59.70 on WebNLG, and 25.66 on AGENDA datasets - a relative improvement of 31.8%, 4.5%, and 42.4%, respectively. In an extensive analysis, we identify possible reasons for the PLMs success on graph-to-text tasks. We find evidence that their knowledge about true facts helps them perform well even when the input graph representation is reduced to a simple bag of node and edge labels.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا