ﻻ يوجد ملخص باللغة العربية
In this paper, we present an Efficient Planning System for automated vehicles In highLy interactive envirONments (EPSILON). EPSILON is an efficient interaction-aware planning system for automated driving, and is extensively validated in both simulation and real-world dense city traffic. It follows a hierarchical structure with an interactive behavior planning layer and an optimization-based motion planning layer. The behavior planning is formulated from a partially observable Markov decision process (POMDP), but is much more efficient than naively applying a POMDP to the decision-making problem. The key to efficiency is guided branching in both the action space and observation space, which decomposes the original problem into a limited number of closed-loop policy evaluations. Moreover, we introduce a new driver model with a safety mechanism to overcome the risk induced by the potential imperfectness of prior knowledge. For motion planning, we employ a spatio-temporal semantic corridor (SSC) to model the constraints posed by complex driving environments in a unified way. Based on the SSC, a safe and smooth trajectory is optimized, complying with the decision provided by the behavior planner. We validate our planning system in both simulations and real-world dense traffic, and the experimental results show that our EPSILON achieves human-like driving behaviors in highly interactive traffic flow smoothly and safely without being over-conservative compared to the existing planning methods.
This paper presents a novel algorithm, called $epsilon^*$+, for online coverage path planning of unknown environments using energy-constrained autonomous vehicles. Due to limited battery size, the energy-constrained vehicles have limited duration of
The Institute of Measurement, Control and Microtechnology at Ulm University investigates advanced driver assistance systems for decades and concentrates in large parts on autonomous driving. It is well known that motion planning is a key technology f
This paper presents a search-based partial motion planner to generate dynamically feasible trajectories for car-like robots in highly dynamic environments. The planner searches for smooth, safe, and near-time-optimal trajectories by exploring a state
Automated driving in urban scenarios requires efficient planning algorithms able to handle complex situations in real-time. A popular approach is to use graph-based planning methods in order to obtain a rough trajectory which is subsequently optimize
Online state-time trajectory planning in highly dynamic environments remains an unsolved problem due to the unpredictable motions of moving obstacles and the curse of dimensionality from the state-time space. Existing state-time planners are typicall