ﻻ يوجد ملخص باللغة العربية
We propose an iterative improvement method for the Harrow-Hassidim-Lloyd (HHL) algorithm to solve a linear system of equations. This is a quantum-classical hybrid algorithm. The accuracy is essential to solve the linear system of equations. However, the accuracy of the HHL algorithm is limited by the number of quantum bits used to express the eigenvalues of the matrix. Our iterative method improves the accuracy of the HHL solutions, and gives higher accuracy which surpasses the accuracy limited by the number of quantum bits. In practical HHL algorithm, a huge number of measurements is required to obtain good accuracy, even if we provide a sufficient number of quantum bits for the eigenvalue expression, since the solution is statistically processed from the measurements. Our improved iterative method can reduce the number of measurements. Moreover, the sign information for each eigenstate of the solution is lost once the measurement is made, although the sign is significant. Therefore, the naive iterative method of the HHL algorithm may slow down, especially, when the solution includes wrong signs. In this paper, we propose and evaluate an improved iterative method for the HHL algorithm that is robust against the sign information loss, in terms of the number of iterations and the computational accuracy.
Quantum computers have the potential of solving certain problems exponentially faster than classical computers. Recently, Harrow, Hassidim and Lloyd proposed a quantum algorithm for solving linear systems of equations: given an $Ntimes{N}$ matrix $A$
We present and experimentally realize a quantum algorithm for efficiently solving the following problem: given an $Ntimes N$ matrix $mathcal{M}$, an $N$-dimensional vector $textbf{emph{b}}$, and an initial vector $textbf{emph{x}}(0)$, obtain a target
This paper introduces and analyzes a preconditioned modified of the Hermitian and skew-Hermitian splitting (PMHSS). The large sparse continuous Sylvester equations are solved by PMHSS iterative algorithm based on nonHermitian, complex, positive defin
We present a novel application of the HHL (Harrow-Hassidim-Lloyd) algorithm -- a quantum algorithm solving systems of linear equations -- in solving an open problem about quantum random walks, namely computing hitting (or absorption) probabilities of
Recently, it is shown that quantum computers can be used for obtaining certain information about the solution of a linear system Ax=b exponentially faster than what is possible with classical computation. Here we first review some key aspects of the