ﻻ يوجد ملخص باللغة العربية
This paper explores the limits of the current generation of large language models for program synthesis in general purpose programming languages. We evaluate a collection of such models (with between 244M and 137B parameters) on two new benchmarks, MBPP and MathQA-Python, in both the few-shot and fine-tuning regimes. Our benchmarks are designed to measure the ability of these models to synthesize short Python programs from natural language descriptions. The Mostly Basic Programming Problems (MBPP) dataset contains 974 programming tasks, designed to be solvable by entry-level programmers. The MathQA-Python dataset, a Python version of the MathQA benchmark, contains 23914 problems that evaluate the ability of the models to synthesize code from more complex text. On both datasets, we find that synthesis performance scales log-linearly with model size. Our largest models, even without finetuning on a code dataset, can synthesize solutions to 59.6 percent of the problems from MBPP using few-shot learning with a well-designed prompt. Fine-tuning on a held-out portion of the dataset improves performance by about 10 percentage points across most model sizes. On the MathQA-Python dataset, the largest fine-tuned model achieves 83.8 percent accuracy. Going further, we study the models ability to engage in dialog about code, incorporating human feedback to improve its solutions. We find that natural language feedback from a human halves the error rate compared to the models initial prediction. Additionally, we conduct an error analysis to shed light on where these models fall short and what types of programs are most difficult to generate. Finally, we explore the semantic grounding of these models by fine-tuning them to predict the results of program execution. We find that even our best models are generally unable to predict the output of a program given a specific input.
Program synthesis from incomplete specifications (e.g. input-output examples) has gained popularity and found real-world applications, primarily due to its ease-of-use. Since this technology is often used in an interactive setting, efficiency and cor
In this paper, we propose a new technique based on program synthesis for extracting information from webpages. Given a natural language query and a few labeled webpages, our method synthesizes a program that can be used to extract similar types of in
Program synthesis from input-output examples has been a long-standing challenge, and recent works have demonstrated some success in designing deep neural networks for program synthesis. However, existing efforts in input-output neural program synthes
We present a language to specify syntax guided synthesis (SyGuS) problems. Syntax guidance is a prominent theme in contemporary program synthesis approaches, and SyGuS was first described in [1]. This paper describes concretely the input format of a
Programming-by-example technologies are being deployed in industrial products for real-time synthesis of various kinds of data transformations. These technologies rely on the user to provide few representative examples of the transformation task. Mot