ﻻ يوجد ملخص باللغة العربية
Unsupervised disentanglement learning is a crucial issue for understanding and exploiting deep generative models. Recently, SeFa tries to find latent disentangled directions by performing SVD on the first projection of a pre-trained GAN. However, it is only applied to the first layer and works in a post-processing way. Hessian Penalty minimizes the off-diagonal entries of the outputs Hessian matrix to facilitate disentanglement, and can be applied to multi-layers.However, it constrains each entry of output independently, making it not sufficient in disentangling the latent directions (e.g., shape, size, rotation, etc.) of spatially correlated variations. In this paper, we propose a simple Orthogonal Jacobian Regularization (OroJaR) to encourage deep generative model to learn disentangled representations. It simply encourages the variation of output caused by perturbations on different latent dimensions to be orthogonal, and the Jacobian with respect to the input is calculated to represent this variation. We show that our OroJaR also encourages the outputs Hessian matrix to be diagonal in an indirect manner. In contrast to the Hessian Penalty, our OroJaR constrains the output in a holistic way, making it very effective in disentangling latent dimensions corresponding to spatially correlated variations. Quantitative and qualitative experimental results show that our method is effective in disentangled and controllable image generation, and performs favorably against the state-of-the-art methods. Our code is available at https://github.com/csyxwei/OroJaR
We present MixNMatch, a conditional generative model that learns to disentangle and encode background, object pose, shape, and texture from real images with minimal supervision, for mix-and-match image generation. We build upon FineGAN, an unconditio
We study the problem of learning to map, in an unsupervised way, between domains A and B, such that the samples b in B contain all the information that exists in samples a in A and some additional information. For example, ignoring occlusions, B can
We propose FineGAN, a novel unsupervised GAN framework, which disentangles the background, object shape, and object appearance to hierarchically generate images of fine-grained object categories. To disentangle the factors without supervision, our ke
There have been a fairly of research interests in exploring the disentanglement of appearance and shape from human images. Most existing endeavours pursuit this goal by either using training images with annotations or regulating the training process
Domain adaptation aims to mitigate the domain gap when transferring knowledge from an existing labeled domain to a new domain. However, existing disentanglement-based methods do not fully consider separation between domain-invariant and domain-specif