ترغب بنشر مسار تعليمي؟ اضغط هنا

Band gap renormalization and indirect optical absorption in MgSiN$_2$ at finite temperature

113   0   0.0 ( 0 )
 نشر من قبل Dangqi Fang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Dangqi Fang




اسأل ChatGPT حول البحث

We investigate the temperature effect on the electronic band structure and optical absorption property of wide-band-gap ternary nitride MgSiN$_2$ using first-principles calculations. We find that electron-phonon coupling leads to a giant reduction in the indirect gap of MgSiN$_2$, which is indispensable in understanding the optoelectronic properties of this material. Moreover, higher-order electron-phonon coupling terms in MgSiN$_2$ captured by the Monte Carlo calculations play an important role, especially at higher temperatures. Taking the band gap renormalization into account, the band gap of MgSiN$_2$ determined by the quasiparticle GW0 calculation shows good agreement with recent experimental result. The predicted phonon-assisted indirect optical absorption spectra show that with increasing temperature the absorption onset undergoes a red-shift and the absorption peaks become smoother. Our work provides helpful insights to the nature of the band gap of MgSiN$_2$ and facilitates its application in ultraviolet optoelectronic devices.



قيم البحث

اقرأ أيضاً

84 - S. Perret , Y. Cure , L. Grenet 2020
We report on the precise determination of both the band gap E$_text{g}$, and the characteristic energy $U$ of the band tail of localized defect states, for monocrystalline Ag$_2$ZnSnSe$_4$. Both photoluminescence excitation and time-resolved photolum inescence studies lead to E$_text{g} = 1223pm3$ meV, and $U = 20pm3$ meV, at 6 K. The interest of the methodology developed here is to account quantitatively for the time-resolved photoluminescence and photoluminescence excitation spectra by only considering standard textbook density of states, and state filling effects. Such an approach is different from the one most often used to evaluate the energy extent of the localized states, namely by measuring the energy shift between the photoluminescence emission and the excitation one -- the so-called Stokes shift. The advantage of the present method is that no arbitrary choice of the low power excitation has to be done to select the photoluminescence emission spectrum and its peak energy.
271 - Luqing Wang , Alex Kutana , 2014
Monolayer transition metal dichalcogenides are promising materials for photoelectronic devices. Among them, molybdenum disulphide (MoS$_2$) and tungsten disulphide (WS$_2$) are some of the best candidates due to their favorable band gap values and ba nd edge alignments. Here we consider various perturbative corrections to the DFT electronic structure, e.g. GW, spin-orbit coupling, as well as many-body excitonic and trionic effects, and calculate accurate band gaps as a function of homogeneous strain in these materials. We show that all of these corrections are of comparable magnitudes and need to be included in order to obtain an accurate electronic structure. We calculate the strain at which the direct-to-indirect gap transition occurs. After considering all contributions, the direct to indirect gap transition strain is found to be at 2.7% in MoS$_2$ and 3.9% in WS$_2$. These values are generally higher than the previously reported theoretical values.
The dynamics of band-gap renormalization and gain build-up in monolayer MoTe$_2$ is investigated by evaluating the non-equilibrium Dirac-Bloch equations with the incoherent carrier-carrier and carrier-phonon scattering treated via quantum-Boltzmann t ype scattering equations. For the case where an approximately $300$ fs-long high intensity optical pulse generates charge-carrier densities in the gain regime, the strong Coulomb coupling leads to a relaxation of excited carriers on a few fs time scale. The pump-pulse generation of excited carriers induces a large band-gap renormalization during the time scale of the pulse. Efficient phonon coupling leads to a subsequent carrier thermalization within a few ps, which defines the time scale for the optical gain build-up energetically close to the low-density exciton resonance.
The quasiparticle band-gap renormalization induced by the doped carriers is an important and well-known feature in two-dimensional semiconductors, including transition-metal dichalcogenides (TMDs), and it is of both theoretical and practical interest . To get a quantitative understanding of this effect, here we calculate the quasiparticle band-gap renormalization of the electron-doped monolayer MoS$_2$, a prototypical member of TMDs. The many-body electron-electron interaction induced renormalization of the self-energy is found within the random phase approximation and to account for the quasi-2D character of the Coulomb interaction in this system a Keldysh-type interaction with a nonlocal dielectric constant is used. Considering the renormalization of both the valence and the conduction bands, our calculations reveal a large and nonlinear band-gap renormalization upon adding free carriers to the conduction band. We find a 410 meV reduction of the band gap for the monolayer MoS$_2$ on SiO$_2$ substrate at the free carrier density $n=4.9times 10^{12} rm{cm^{-2}}$ which is in excellent agreement with available experimental results. We also discuss the role of exchange and correlation parts of the self-energy on the overall band-gap renormalization of the system. The strong dependence of the band-gap renormalization on the surrounding dielectric environment is also demonstrated in this work, and a much larger shrinkage of the band gap is predicted for the freestanding monolayer MoS$_2$.
The use of cryogenic silicon as a detector medium for dark matter searches is gaining popularity. Many of these searches are highly dependent on the value of the photoelectric absorption cross section of silicon at low temperatures, particularly near the silicon band gap energy, where the searches are most sensitive to low mass dark matter candidates. While such cross section data has been lacking from the literature, previous dark matter search experiments have attempted to estimate this parameter by extrapolating it from higher temperature data. However, discrepancies in the high temperature data have led to order-of-magnitude differences in the extrapolations. In this paper, we resolve these discrepancies by using a novel technique to make a direct, low temperature measurement of the photoelectric absorption cross section of silicon at energies near the band gap.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا