ﻻ يوجد ملخص باللغة العربية
Many generation tasks follow a one-to-many mapping relationship: each input could be associated with multiple outputs. Existing methods like Conditional Variational AutoEncoder(CVAE) employ a latent variable to model this one-to-many relationship. However, this high-dimensional and dense latent variable lacks explainability and usually leads to poor and uncontrollable generations. In this paper, we innovatively introduce the linguistic concept of pattern to decompose the one-to-many mapping into multiple one-to-one mappings and further propose a model named Sparse Pattern Mixture of Experts(SPMoE). Each one-to-one mapping is associated with a conditional generation pattern and is modeled with an expert in SPMoE. To ensure each language pattern can be exclusively handled with an expert model for better explainability and diversity, a sparse mechanism is employed to coordinate all the expert models in SPMoE. We assess the performance of our SPMoE on the paraphrase generation task and the experiment results prove that SPMoE can achieve a good balance in terms of quality, pattern-level diversity, and corpus-level diversity.
Sparsely-gated Mixture of Experts networks (MoEs) have demonstrated excellent scalability in Natural Language Processing. In Computer Vision, however, almost all performant networks are dense, that is, every input is processed by every parameter. We
Domain generalizable (DG) person re-identification (ReID) is a challenging problem because we cannot access any unseen target domain data during training. Almost all the existing DG ReID methods follow the same pipeline where they use a hybrid datase
Query rewriting (QR) systems are widely used to reduce the friction caused by errors in a spoken language understanding pipeline. However, the underlying supervised models require a large number of labeled pairs, and these pairs are hard and costly t
We investigate the problem of deterministic pattern matching in multiple streams. In this model, one symbol arrives at a time and is associated with one of s streaming texts. The task at each time step is to report if there is a new match between a f
Simultaneous machine translation (SiMT) generates translation before reading the entire source sentence and hence it has to trade off between translation quality and latency. To fulfill the requirements of different translation quality and latency in