ﻻ يوجد ملخص باللغة العربية
We propose PR-RRN, a novel neural-network based method for Non-rigid Structure-from-Motion (NRSfM). PR-RRN consists of Residual-Recursive Networks (RRN) and two extra regularization losses. RRN is designed to effectively recover 3D shape and camera from 2D keypoints with novel residual-recursive structure. As NRSfM is a highly under-constrained problem, we propose two new pairwise regularization to further regularize the reconstruction. The Rigidity-based Pairwise Contrastive Loss regularizes the shape representation by encouraging higher similarity between the representations of high-rigidity pairs of frames than low-rigidity pairs. We propose minimum singular-value ratio to measure the pairwise rigidity. The Pairwise Consistency Loss enforces the reconstruction to be consistent when the estimated shapes and cameras are exchanged between pairs. Our approach achieves state-of-the-art performance on CMU MOCAP and PASCAL3D+ dataset.
We propose C3DPO, a method for extracting 3D models of deformable objects from 2D keypoint annotations in unconstrained images. We do so by learning a deep network that reconstructs a 3D object from a single view at a time, accounting for partial occ
Current non-rigid structure from motion (NRSfM) algorithms are mainly limited with respect to: (i) the number of images, and (ii) the type of shape variability they can handle. This has hampered the practical utility of NRSfM for many applications wi
All current non-rigid structure from motion (NRSfM) algorithms are limited with respect to: (i) the number of images, and (ii) the type of shape variability they can handle. This has hampered the practical utility of NRSfM for many applications withi
Non-Rigid Structure from Motion (NRSfM) refers to the problem of reconstructing cameras and the 3D point cloud of a non-rigid object from an ensemble of images with 2D correspondences. Current NRSfM algorithms are limited from two perspectives: (i) t
Non-Rigid Structure-from-Motion (NRSfM) problem aims to recover 3D geometry of a deforming object from its 2D feature correspondences across multiple frames. Classical approaches to this problem assume a small number of feature points and, ignore the