ترغب بنشر مسار تعليمي؟ اضغط هنا

Federated Learning with Correlated Data: Taming the Tail for Age-Optimal Industrial IoT

81   0   0.0 ( 0 )
 نشر من قبل Chen-Feng Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

While information delivery in industrial Internet of things demands reliability and latency guarantees, the freshness of the controllers available information, measured by the age of information (AoI), is paramount for high-performing industrial automation. The problem in this work is cast as a sensors transmit power minimization subject to the peak-AoI requirement and a probabilistic constraint on queuing latency. We further characterize the tail behavior of the latency by a generalized Pareto distribution (GPD) for solving the power allocation problem through Lyapunov optimization. As each sensor utilizes its own data to locally train the GPD model, we incorporate federated learning and propose a local-model selection approach which accounts for correlation among the sensors training data. Numerical results show the tradeoff between the transmit power, peak AoI, and delays tail distribution. Furthermore, we verify the superiority of the proposed correlation-aware approach for selecting the local models in federated learning over an existing baseline.



قيم البحث

اقرأ أيضاً

This work studies a real-time environment monitoring scenario in the industrial Internet of things, where wireless sensors proactively collect environmental data and transmit it to the controller. We adopt the notion of risk-sensitivity in financial mathematics as the objective to jointly minimize the mean, variance, and other higher-order statistics of the network energy consumption subject to the constraints on the age of information (AoI) threshold violation probability and the AoI exceedances over a pre-defined threshold. We characterize the extreme AoI staleness using results in extreme value theory and propose a distributed power allocation approach by weaving in together principles of Lyapunov optimization and federated learning (FL). Simulation results demonstrate that the proposed FL-based distributed solution is on par with the centralized baseline while consuming 28.50% less system energy and outperforms the other baselines.
In wireless industrial networks, the information of time-sensitive control systems needs to be transmitted in an ultra-reliable and low-latency manner. This letter studies the resource allocation problem in finite blocklength transmission, in which t he information freshness is measured as the age of information (AoI) whose maximal AoI is characterized using extreme value theory (EVT). The considered system design is to minimize the sensors transmit power and transmission blocklength subject to constraints on the maximal AoIs tail behavior. The studied problem is solved using Lyapunov stochastic optimization, and a dynamic reliability and age-aware policy for resource allocation and status updates is proposed. Simulation results validate the effectiveness of using EVT to characterize the maximal AoI. It is shown that sensors need to send larger-size data with longer transmission blocklength at lower transmit power. Moreover, the maximal AoIs tail decays faster at the expense of higher average information age.
Due to the strong analytical ability of big data, deep learning has been widely applied to train the collected data in industrial IoT. However, for privacy issues, traditional data-gathering centralized learning is not applicable to industrial scenar ios sensitive to training sets. Recently, federated learning has received widespread attention, since it trains a model by only relying on gradient aggregation without accessing training sets. But existing researches reveal that the shared gradient still retains the sensitive information of the training set. Even worse, a malicious aggregation server may return forged aggregated gradients. In this paper, we propose the VFL, verifiable federated learning with privacy-preserving for big data in industrial IoT. Specifically, we use Lagrange interpolation to elaborately set interpolation points for verifying the correctness of the aggregated gradients. Compared with existing schemes, the verification overhead of VFL remains constant regardless of the number of participants. Moreover, we employ the blinding technology to protect the privacy of the gradients submitted by the participants. If no more than n-2 of n participants collude with the aggregation server, VFL could guarantee the encrypted gradients of other participants not being inverted. Experimental evaluations corroborate the practical performance of the presented VFL framework with high accuracy and efficiency.
Since edge device failures (i.e., anomalies) seriously affect the production of industrial products in Industrial IoT (IIoT), accurately and timely detecting anomalies is becoming increasingly important. Furthermore, data collected by the edge device may contain the users private data, which is challenging the current detection approaches as user privacy is calling for the public concern in recent years. With this focus, this paper proposes a new communication-efficient on-device federated learning (FL)-based deep anomaly detection framework for sensing time-series data in IIoT. Specifically, we first introduce a FL framework to enable decentralized edge devices to collaboratively train an anomaly detection model, which can improve its generalization ability. Second, we propose an Attention Mechanism-based Convolutional Neural Network-Long Short Term Memory (AMCNN-LSTM) model to accurately detect anomalies. The AMCNN-LSTM model uses attention mechanism-based CNN units to capture important fine-grained features, thereby preventing memory loss and gradient dispersion problems. Furthermore, this model retains the advantages of LSTM unit in predicting time series data. Third, to adapt the proposed framework to the timeliness of industrial anomaly detection, we propose a gradient compression mechanism based on Top-textit{k} selection to improve communication efficiency. Extensive experiment studies on four real-world datasets demonstrate that the proposed framework can accurately and timely detect anomalies and also reduce the communication overhead by 50% compared to the federated learning framework that does not use a gradient compression scheme.
Federated learning (FL) is a distributed learning methodology that allows multiple nodes to cooperatively train a deep learning model, without the need to share their local data. It is a promising solution for telemonitoring systems that demand inten sive data collection, for detection, classification, and prediction of future events, from different locations while maintaining a strict privacy constraint. Due to privacy concerns and critical communication bottlenecks, it can become impractical to send the FL updated models to a centralized server. Thus, this paper studies the potential of hierarchical FL in IoT heterogeneous systems and propose an optimized solution for user assignment and resource allocation on multiple edge nodes. In particular, this work focuses on a generic class of machine learning models that are trained using gradient-descent-based schemes while considering the practical constraints of non-uniformly distributed data across different users. We evaluate the proposed system using two real-world datasets, and we show that it outperforms state-of-the-art FL solutions. In particular, our numerical results highlight the effectiveness of our approach and its ability to provide 4-6% increase in the classification accuracy, with respect to hierarchical FL schemes that consider distance-based user assignment. Furthermore, the proposed approach could significantly accelerate FL training and reduce communication overhead by providing 75-85% reduction in the communication rounds between edge nodes and the centralized server, for the same model accuracy.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا