ﻻ يوجد ملخص باللغة العربية
The proliferation of news media available online simultaneously presents a valuable resource and significant challenge to analysts aiming to profile and understand social and cultural trends in a geographic location of interest. While an abundance of news reports documenting significant events, trends, and responses provides a more democratized picture of the social characteristics of a location, making sense of an entire corpus to extract significant trends is a steep challenge for any one analyst or team. Here, we present an approach using natural language processing techniques that seeks to quantify how a set of pre-defined topics of interest change over time across a large corpus of text. We found that, given a predefined topic, we can identify and rank sets of terms, or n-grams, that map to those topics and have usage patterns that deviate from a normal baseline. Emergence, disappearance, or significant variations in n-gram usage present a ground-up picture of a topics dynamic salience within a corpus of interest.
Speech-enabled systems typically first convert audio to text through an automatic speech recognition (ASR) model and then feed the text to downstream natural language processing (NLP) modules. The errors of the ASR system can seriously downgrade the
Code-mixing or code-switching are the effortless phenomena of natural switching between two or more languages in a single conversation. Use of a foreign word in a language; however, does not necessarily mean that the speaker is code-switching because
More than 200 generic drugs approved by the U.S. Food and Drug Administration for non-cancer indications have shown promise for treating cancer. Due to their long history of safe patient use, low cost, and widespread availability, repurposing of gene
When trained on large, unfiltered crawls from the internet, language models pick up and reproduce all kinds of undesirable biases that can be found in the data: they often generate racist, sexist, violent or otherwise toxic language. As large models
This article provides an interesting exploration of character-level convolutional neural network solving Chinese corpus text classification problem. We constructed a large-scale Chinese language dataset, and the result shows that character-level conv