ﻻ يوجد ملخص باللغة العربية
We present Low-Frequency Array (LOFAR) telescope observations of the radio-loud gravitational lens systems MG 0751+2716 and CLASS B1600+434. These observations produce images at 300 milliarcseconds (mas) resolution at 150 MHz. In the case of MG 0751+2716, lens modelling is used to derive a size estimate of around 2 kpc for the low-frequency source, which is consistent with a previous 27.4 GHz study in the radio continuum with Karl G. Jansky Very Large Array (VLA). This consistency implies that the low-frequency radio source is cospatial with the core-jet structure that forms the radio structure at higher frequencies, and no significant lobe emission or further components associated with star formation are detected within the magnified region of the lens. CLASS B1600+434 is a two-image lens where one of the images passes through the edge-on spiral lensing galaxy, and the low radio frequency allows us to derive limits on propagation effects, namely scattering, in the lensing galaxy. The observed flux density ratio of the two lensed images is 1.19 +/- 0.04 at an observed frequency of 150 MHz. The widths of the two images give an upper limit of 0.035 kpc m^-20/3 on the integrated scattering column through the galaxy at a distance approximately 1 kpc above its plane, under the assumption that image A is not affected by scattering. This is relatively small compared to limits derived through very long baseline interferometry (VLBI) studies of differential scattering in lens systems. These observations demonstrate that LOFAR is an excellent instrument for studying gravitational lenses. We also report on the inability to calibrate three further lens observations: two from early observations that have less well determined station calibration, and a third observation impacted by phase transfer problems.
Relatively little information is available about the Universe at ultra-low radio frequencies, i.e. below 50 MHz (ULF), although the ULF spectral window contains a wealth of unique diagnostics for studying galactic and extragalactic phenomena. Sub-arc
We present an analysis of archival multi-frequency Very Large Array monitoring data of the two-image gravitational lens system CLASS B1600+434, including the polarization properties at 8.5 GHz. From simulating radio light curves incorporating realist
The Low-Frequency Array (LOFAR) Long-Baseline Calibrator Survey (LBCS) was conducted between 2014 and 2019 in order to obtain a set of suitable calibrators for the LOFAR array. In this paper we present the complete survey, building on the preliminary
3C295 is a bright, compact steep spectrum source with a well-studied integrated radio spectral energy distribution (SED) from 132 MHz to 15 GHz. However, spatially resolved spectral studies have been limited due to a lack of high resolution images at
We present Very Large Array (VLA) 8.5-GHz light curves of the two lens images of the Cosmic Lens All Sky Survey (CLASS) gravitational lens B1600+434. We find a nearly linear decrease of 18-19% in the flux densities of both lens images over a period o