ترغب بنشر مسار تعليمي؟ اضغط هنا

The angular correlation between the fission fragment intrinsic spins

90   0   0.0 ( 0 )
 نشر من قبل Aurel Bulgac
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Aurel Bulgac




اسأل ChatGPT حول البحث

It is shown that the unexpected character of the angular correlation between the angle of the primary fission fragment intrinsic spins, recently evaluated by performing very complex time-dependent density functional simulations, which favors fission fragment intrinsic spins pointing in opposite directions, can be understood using simple general arguments.



قيم البحث

اقرأ أيضاً

We present the first fully unrestricted microscopic calculations of the primary fission fragment intrinsic spins and of the fission fragments relative orbital angular momentum for $^{236}$U$^*$, $^{240}$Pu$^*$, and $^{252}$Cf using the time-dependent density functional theory framework. Within this microscopic approach, free of restrictions and unchecked assumptions and which incorporates the relevant physical observables relevant for describing fission, we evaluate the triple distribution of the fission fragment intrinsic spins and of their fission fragments relative orbital angular momentum and show that their dynamics is dominated by their bending collective modes, in contradistinction to the predictions of the existing phenomenological models and some interpretations of experimental data.
The intrinsic spins and their correlations are the least understood characteristics of fission fragments from both theoretical and experimental points of view. In many nuclear reactions the emerging fragments are typically excited and acquire an intr insic excitation energy and an intrinsic spin depending on the type of the reactions and interaction mechanism. Both the intrinsic excitation energies and the fragments intrinsic spins and parities are controlled by the interaction mechanism and conservations laws, which lead to their correlations and determines the character of their de-excitation mechanism. We outline here a framework for the theoretical extraction of the intrinsic spin distributions of the fragments and their correlations within the fully microscopic real-time density functional theory formalism and illustrate it on the example of induced fission of $^{236}$U and $^{240}$Pu, using two nuclear energy density functionals. These fission fragment intrinsic spin distributions display new qualitative features previously not discussed in literature. Within this fully microscopic framework we extract for the first time the intrinsic spin distributions of fission fragments of $^{236}$U and $^{240}$Pu as well as the correlations of their intrinsic spins, which have been debated in literature for more than six decades with no definite conclusions so far.
314 - A.E. Lovell , P. Talou , I. Stetcu 2020
Several sources of angular anisotropy for fission fragments and prompt neutrons have been studied in neutron-induced fission reactions. These include kinematic recoils of the target from the incident neutron beam and the fragments from the emission o f the prompt neutrons, preferential directions of the emission of the fission fragments with respect to the beam axis due to the population of particular transition states at the fission barrier, and forward-peaked angular distributions of pre-equilibrium neutrons which are emitted before the formation of a compound nucleus. In addition, there are several potential sources of angular anisotropies that are more difficult to disentangle: the angular distributions of prompt neutrons from fully accelerated fragments or from scission neutrons, and the emission of neutrons from fission fragments that are not fully accelerated. In this work, we study the effects of the first group of anisotropy sources, particularly exploring the correlations between the fission fragment anisotropy and the resulting neutron anisotropy. While kinematic effects were already accounted for in our Hauser-Feshbach Monte Carlo code, $mathtt{CGMF}$, anisotropic angular distributions for the fission fragments and pre-equilibrium neutrons resulting from neutron-induced fission on $^{233,234,235,238}$U, $^{239,241}$Pu, and $^{237}$Np have been introduced for the first time. The effects of these sources of anisotropy are examined over a range of incident neutron energies, from thermal to 20 MeV, and compared to experimental data from the Chi-Nu liquid scintillator array. The anisotropy of the fission fragments is reflected in the anisotropy of the prompt neutrons, especially as the outgoing energy of the prompt neutrons increases, allowing for an extraction of the fission fragment anisotropy to be made from a measurement of the neutrons.
252 - I. Stetcu , A.E. Lovell , P. Talou 2021
We investigate the angular momentum removal from fission fragments (FFs) through neutron and $gamma$-ray emission, where we find that about half the neutrons are emitted with angular momenta $ge 1.5hbar$ and that the change in angular momentum after the emission of neutrons and statistical $gamma$ rays is significant, contradicting usual assumptions. Per fission event, in our simulations, the neutron and statistical $gamma$-ray emissions change the spin of the fragment by 3.5 -- 5~$hbar$, with a large standard deviation comparable to the average value. Such wide angular momentum removal distributions can hide any underlying correlations in the fission fragment initial spin values. Within our model, we reproduce data on spin measurements from discrete transitions after neutron emissions, especially in the case of light FFs. The agreement further improves for the heavy fragments if one removes from the analysis the events that would produce isomeric states. Finally, we show that while in our model the initial FF spins do not follow a saw-tooth like behavior observed in recent measurements, the average FF spin computed after neutron and statistical $gamma$ emissions exhibits a shape that resembles a saw tooth. This suggests that the average FF spin measured after statistical emissions is not necessarily connected with the scission mechanism as previously implied.
The Hauser-Feshbach fission fragment decay model, $mathtt{HF^3D}$, which calculates the statistical decay of fission fragments, has been expanded to include multi-chance fission, up to neutron incident energies of 20 MeV. The deterministic decay take s as input pre-scission quantities - fission probabilities and the average energy causing fission - and post-scission quantities - yields in mass, charge, total kinetic energy, spin, and parity. From these fission fragment initial conditions, the full decay is followed through both prompt and delayed particle emissions, allowing for the calculation of prompt neutron and $gamma$ properties, such as multiplicity and energy distributions, both independent and cumulative fission yields, and delayed neutron observables. In this work, we describe the implementation of multi-chance fission into the $mathtt{HF^3D}$ model, and show an example of prompt and delayed quantities beyond first-chance fission, using the example of neutron-induced fission on $^{235}$U. This expansion represents significant progress in consistently modeling the emission of prompt and delayed particles from fissile systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا