ﻻ يوجد ملخص باللغة العربية
Shear thickening of suspensions is studied by discrete-particle simulation, accounting for hydrodynamic, repulsive, and contact forces. The contact forces, including friction, are activated when the imposed shear stress $sigma$ is able to overcome the repulsive force. The simulation method captures strong continuous and discontinuous shear thickening (CST and DST) in the range of solid volume fraction $0.54 le phile 0.56$ studied here. This work presents characteristics of the contact force network developed in the suspension under shear. The number of frictional contacts per particle $Z$ is shown to have a one-to-one relationship with the suspension stress, and the conditions for simple percolation of frictional contacts are found to deviate strongly from those of a random network model. The stress is shown to have important correlations with topological invariant metrics of the contact network known as $k$-cores; the $k$-cores are maximal subgraphs (`clusters) in which all member particles have $k$ or more frictional contacts to other members of the same subgraph. Only $kle 3$ is found in this work at solid volume fractions $phi le 0.56$. Distinct relationships between the suspension rheology and the $k$-cores are found. One is that the stress susceptibility, defined as $partial sigma/partial dot{gamma}$ where $dot{gamma}$ is the shear rate, is found to peak at the condition of onset of the $3$-core, regardless of whether the system exhibits CST or DST. A second is that the stress per particle within cores of different $k$ increases sharply with increase of $k$ at the onset of DST; in CST, the difference is mild.
Dense, stabilized, frictional particulate suspensions in a viscous liquid undergo increasingly strong continuous shear thickening (CST) as the solid packing fraction, $phi$, increases above a critical volume fraction, and discontinuous shear thickeni
We study the rheology of cornstarch suspensions, a non-Brownian particle system that exhibits discontinuous shear thickening. Using magnetic resonance imaging (MRI), the local properties of the flow are obtained by the determination of local velocity
We study the fronts that appear when a shear-thickening suspension is submitted to a sudden driving force at a boundary. Using a quasi-one-dimensional experimental geometry, we extract the front shape and the propagation speed from the suspension flo
We study the emergence of shear thickening in dense suspensions of non-Brownian particles. We combine local velocity and concentration measurements using Magnetic Resonance Imaging with macroscopic rheometry experiments. In steady state, we observe t
Discontinuous shear thickening (DST) observed in many dense athermal suspensions has proven difficult to understand and to reproduce by numerical simulation. By introducing a numerical scheme including both relevant hydrodynamic interactions and gran