ترغب بنشر مسار تعليمي؟ اضغط هنا

Interaction with environment as a source of ultra-strong coupling

69   0   0.0 ( 0 )
 نشر من قبل Alexander Zyablovsky A.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this letter, we demonstrate that in both classical and quantum open systems, the Hamiltonian interaction between subsystems, along with relaxations caused by the interaction with reservoirs, results in the appearance of effective non-Hermitian coupling. It is determined by a gradient of density of states of reservoirs. We show that for a power-law frequency dependence of the density of states, the non-Hermitian coupling is proportional to a product of the Hermitian coupling strength and the relaxation rates. As a result, this non-Hermitian coupling begins to play a crucial role with increasing Hermitian coupling strength between the subsystems and leads to a qualitative change in the behavior of non-Hermitian systems. Namely, when the Hermitian coupling strength exceeds a critical value, the non-Hermitian coupling becomes so large that it guarantees that the system is in the strong coupling regime at any relaxation rate. This critical coupling can be associated with the transition point to the ultra-strong coupling regime, which, until now, has not been defined exactly.



قيم البحث

اقرأ أيضاً

Strong and ultra-strong light-matter coupling are remarkable phenomena of quantum electrodynamics occurring when the interaction between a matter excitation and the electromagnetic field cannot be described by usual perturbation theory. This is gener ally achieved by coupling an excitation with large oscillator strength to the confined electromagnetic mode of an optical microcavity. In this work we demonstrate that strong/ultra-strong coupling can also take place in the absence of optical confinement. We have studied the non-perturbative spontaneous emission of collective excitations in a dense two-dimensional electron gas that superradiantly decays into free space. By using a quantum model based on the input-output formalism, we have derived the linear optical properties of the coupled system and demonstrated that its eigenstates are mixed light-matter particles, like in any system displaying strong or ultra-strong light-matter interaction. Moreover, we have shown that in the ultra-strong coupling regime, i.e. when the radiative broadening is comparable to the matter excitation energy, the commonly used rotating-wave and Markov approximations yield unphysical results. Finally, the input-output formalism has allowed us to prove that Kirchhoffs law, describing thermal emission properties, applies to our system in all the light-matter coupling regimes considered in this work.
A primary motivation for studying topological matter regards the protection of topological order from its environment. In this work, we study a topological emitter array coupled to an electromagnetic environment. The photon-emitter coupling produces nonlocal interactions between emitters. Using periodic boundary conditions for all ranges of environment-induced interactions, chiral symmetry inherent to the emitter array is preserved and protects the topological phase. A topological phase transition occurs at a critical photon-emitter coupling which is related to the energy spectrum width of the emitter array. It produces a band touching with parabolic dispersion, distinct to the linear one without considering the environment. Interestingly, the critical point nontrivially changes dissipation rates of edge states, yielding dissipative topological phase transition. In the protected topological phase, edge states suffer from environment-induced dissipation for weak photon-emitter coupling. However, strong coupling leads to dissipationless edge states. Our work presents a way to study topological criticality in open quantum systems.
342 - Paul G. Kwiat 1998
Using the process of spontaneous parametric down conversion in a novel two-crystal geometry, one can generate a source of polarization-entangled photon pairs which is orders of magnitude brighter than previous sources. We have measured a high level o f entanglement between photons emitted over a relatively large collection angle, and over a 10-nm bandwidth. As a demonstration of the source intensity, we obtained a 242-$sigma$ violation of Bells inequalities in less than three minutes.
118 - J. Yang , G. W. Lin , Y. P. Niu 2014
The spectrum width can be narrowed to a certain degree by decreasing the coupling strength for the two-level emitter coupled to the propagating surface plasmon. But the width can not be narrowed any further because of the loss of the photon out of sy stem by spontaneous emission from the emitter. Here we propose a new scheme to construct a narrow-band source via a one-dimensional waveguide coupling with a three-level emitter. It is shown that the reflective spectrum width can be narrowed avoiding the impact of the loss. This approach opens up the possibility of plasmonic ultranarrow single-photon source.
Laser cooled atoms are central to modern precision measurements. They are also increasingly important as an enabling technology for experimental cavity quantum electrodynamics, quantum information processing and matter wave interferometry. Although s ignificant progress has been made in miniaturising atomic metrological devices, these are limited in accuracy by their use of hot atomic ensembles and buffer gases. Advances have also been made in producing portable apparatus that benefit from the advantages of atoms in the microKelvin regime. However, simplifying atomic cooling and loading using microfabrication technology has proved difficult. In this letter we address this problem, realising an atom chip that enables the integration of laser cooling and trapping into a compact apparatus. Our source delivers ten thousand times more atoms than previous magneto-optical traps with microfabricated optics and, for the first time, can reach sub-Doppler temperatures. Moreover, the same chip design offers a simple way to form stable optical lattices. These features, combined with the simplicity of fabrication and the ease of operation, make these new traps a key advance in the development of cold-atom technology for high-accuracy, portable measurement devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا