ترغب بنشر مسار تعليمي؟ اضغط هنا

Drifting Electrons: Nonreciprocal Plasmonics and Thermal Photonics

96   0   0.0 ( 0 )
 نشر من قبل Seyyed Ali Hassani Gangaraj
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Light propagates symmetrically in opposite directions in most materials and structures. This fact -- a consequence of the Lorentz reciprocity principle -- has tremendous implications for science and technology across the electromagnetic spectrum. Here, we investigate an emerging approach to break reciprocity that does not rely on magneto-optical effects or spacetime modulations, but is instead based on biasing a plasmonic material with a direct electric current. Using a 3D Green function formalism and microscopic considerations, we elucidate the propagation properties of surface plasmon-polaritons (SPPs) supported by a generic nonreciprocal platform of this type, revealing some previously overlooked, anomalous, wave-propagation effects. We show that SPPs can propagate in the form of steerable, slow-light, unidirectional beams associated with inflexion points in the modal dispersion. We also clarify the impact of dissipation (due to collisions and Landau damping) on nonreciprocal effects and shed light on the connections between inflexion points, exceptional points at band edges, and modal transitions in leaky-wave structures. We then apply these concepts to the important area of thermal photonics, and provide the first theoretical demonstration of drift-induced nonreciprocal radiative heat transfer between two planar bodies. Our findings may open new opportunities toward the development of nonreciprocal magnet-free devices that combine the benefits of plasmonics and nonreciprocal photonics for wave-guiding and energy applications.



قيم البحث

اقرأ أيضاً

Controlling and detecting thermal radiation is of vital importance for varied applications ranging from energy conversion systems and nanoscale information processing devices to infrared imaging, spectroscopy and sensing. We review the field of high temperature thermal photonics which aims to control the spectrum, polarization, tunability, switchability and directionality of heat radiation from engineered materials in extreme environments. We summarize the candidate materials which are being pursued by the community that have simultaneous polaritonic/plasmonic properties as well as high temperature stability. We also provide a detailed discussion of the common photonic platforms including meta-gratings, photonic crystals, and metamaterials used for thermal emission engineering. We review broad applications including thermophotovoltaics, high temperature radiative cooling, thermal radiation sources, and noisy nanoscale thermal devices. By providing an overview of the recent achievements in this field, we hope this review can accelerate progress to overcome major outstanding problems in modern thermal engineering.
The interplay of spin angular momentum and thermal radiation is a frontier area of interest to nanophotonics as well as topological physics. Here, we show that a thick planar slab of a nonreciprocal material, despite being at thermal equilibrium with its environment, can exhibit nonzero photon spin angular momentum and nonzero radiative heat flux in its vicinity. We identify them as the persistent thermal photon spin (PTPS) and the persistent planar heat current (PPHC) respectively. With a practical example system, we reveal that the fundamental origin of these phenomena is connected to spin-momentum locking of thermally excited evanescent waves. We also discover spin magnetic moment of surface polaritons in nonreciprocal photonics that further clarifies these features. We then propose a novel thermal photonic imaging experiment based on Brownian motion that allows one to witness these surprising features by directly looking at them using a lab microscope. We further demonstrate the universal behavior of these near-field thermal radiation phenomena through a comprehensive analysis of gyroelectric, gyromagnetic and magneto-electric nonreciprocal materials. Together, these results expose a surprisingly little explored research area of thermal spin photonics with prospects for new avenues related to non-Hermitian topological photonics and radiative heat transport.
Inspired by the capability of structured illumination microscopy in subwavelength imaging, many researchers devoted themselves to investigating this methodology. However, due to the free propagating feature of the traditional structured illumination fields, the resolution can be only improved up to double times compared with the diffractied limited microscopy. Besides, most of the previous studies, relying on incoherent illumination sources, are restricted to fluorescent samples. In this work, a subwavelength nonfluorescent imaging method is proposed based on the terahertz traveling wave and plasmonics illumination. Excited along with a metal grating, the spoof surface plasmons are employed as the plasmonics illumination. When the scattering waves with the SSPs illumination are captured, the high order spatial frequency components of the sample are already encoded into the obtainable low order ones. Then, an algorithm is summarized to shift the modulated SF components to their actual positions in the Fourier domain. In this manner, high order SF components carrying the fine information are introduced to reconstruct the desired imaging, leading to an improvement of the resolution up to 0.12 lambda. Encouragingly, the resolution can be further enhanced by tuning the working frequency of the SSPs. This method holds promise for some important applications in terahertz nonfluorescent microscopy and sample detection with weak scattering.
Topological insulators are innovative materials with semiconducting bulk together with surface states forming a Dirac cone, which ensure metallic conduction in the surface plane. Therefore, topological insulators represent an ideal platform for optoe lectronics and photonics. The recent progress of science and technology based on topological insulators enables the exploitation of their huge application capabilities. Here, we review the recent achievements of optoelectronics, photonics and plasmonics with topological insulators. Plasmonic devices and photodetectors based on topological insulators in a wide energy range, from Terahertz to the ultraviolet, promise outstanding impact. Furthermore, the peculiarities, the range of applications and the challenges of the emerging fields of topological photonics and thermoplasmonics are discussed.
A chiral absorber of light can emit spin-polarized (circularly polarized) thermal radiation based on Kirchhoffs law which equates spin-resolved emissivity with spin-resolved absorptivity for reciprocal media at thermal equilibrium. No such law is kno wn for nonreciprocal media. In this work, we discover three spin-resolved Kirchhoffs laws of thermal radiation applicable for both reciprocal and nonreciprocal planar media. In particular, these laws are applicable to multi-layered or composite slabs of generic bianisotropic material classes which include (uniaxial or biaxial) birefringent crystals, (gyrotropic) Weyl semimetals, magnetized semiconductors, plasmas, ferromagnets and ferrites, (magnetoelectric) topological insulators, metamaterials and multiferroic media. We also propose an experiment to verify these laws using a single system of doped Indium Antimonide (InSb) thin film in an external magnetic field. Furthermore, we reveal a surprising result that the planar slabs of all these material classes can emit partially circularly polarized thermal light without requiring any surface patterning, and identify planar configurations which can experience nontrivial thermal optomechanical forces and torques upon thermal emission into the external environment at lower temperature (nonequilibrium). Our work also provides a new fundamental insight of detailed balance of angular momentum (in addition to energy) of equilibrium thermal radiation, and paves the way for practical functionalities based on thermal radiation using nonreciprocal bianisotropic materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا