ﻻ يوجد ملخص باللغة العربية
Securing necessary resources for edge computing processes via effective resource trading becomes a critical technique in supporting computation-intensive mobile applications. Conventional onsite spot trading could facilitate this paradigm with proper incentives, which, however, incurs excessive decision-making latency/energy consumption, and further leads to underutilization of dynamic resources. Motivated by this, a hybrid market unifying futures and spot is proposed to facilitate resource trading among an edge server (seller) and multiple smart devices (buyers) by encouraging some buyers to sign a forward contract with seller in advance, while leaving the remaining buyers to compete for available resources with spot trading. Specifically, overbooking is adopted to achieve substantial utilization and profit advantages owing to dynamic resource demands. By integrating overbooking into futures market, mutually beneficial and risk-tolerable forward contracts with appropriate overbooking rate can be achieved relying on analyzing historical statistics associated with future resource demand and communication quality, which are determined by an alternative optimization-based negotiation scheme. Besides, spot trading problem is studied via considering uniform/differential pricing rules, for which two bilateral negotiation schemes are proposed by addressing both non-convex optimization and knapsack problems. Experimental results demonstrate that the proposed mechanism achieves mutually beneficial players utilities, while outperforming baseline methods on critical indicators, e.g., decision-making latency, resource usage, etc.
Mobile edge computing (MEC) has become a promising solution to utilize distributed computing resources for supporting computation-intensive vehicular applications in dynamic driving environments. To facilitate this paradigm, the onsite resource tradi
Mobile edge computing (MEC) has emerged as one of the key technical aspects of the fifth-generation (5G) networks. The integration of MEC with resource-constrained unmanned aerial vehicles (UAVs) could enable flexible resource provisioning for suppor
Mobile devices with embedded sensors for data collection and environmental sensing create a basis for a cost-effective approach for data trading. For example, these data can be related to pollution and gas emissions, which can be used to check the co
Edge/Fog computing is a novel computing paradigm that provides resource-limited Internet of Things (IoT) devices with scalable computing and storage resources. Compared to cloud computing, edge/fog servers have fewer resources, but they can be access
Recent years have witnessed a rapid proliferation of smart Internet of Things (IoT) devices. IoT devices with intelligence require the use of effective machine learning paradigms. Federated learning can be a promising solution for enabling IoT-based