ﻻ يوجد ملخص باللغة العربية
Kostants weight $q$-multiplicity formula is an alternating sum over a finite group known as the Weyl group, whose terms involve the $q$-analog of Kostants partition function. The $q$-analog of the partition function is a polynomial-valued function defined by $wp_q(xi)=sum_{i=0}^k c_i q^i$, where $c_i$ is the number of ways the weight $xi$ can be written as a sum of exactly $i$ positive roots of a Lie algebra $mathfrak{g}$. The evaluation of the $q$-multiplicity formula at $q = 1$ recovers the multiplicity of a weight in an irreducible highest weight representation of $mathfrak{g}$. In this paper, we specialize to the Lie algebra $mathfrak{sp}_6(mathbb{C})$ and we provide a closed formula for the $q$-analog of Kostants partition function, which extends recent results of Shahi, Refaghat, and Marefat. We also describe the supporting sets of the multiplicity formula (known as the Weyl alternation sets of $mathfrak{sp}_6(mathbb{C})$), and use these results to provide a closed formula for the $q$-multiplicity for any pair of dominant integral weights of $mathfrak{sp}_6(mathbb{C})$. Throughout this work, we provide code to facilitate these computations.
The $q$-analog of Kostants weight multiplicity formula is an alternating sum over a finite group, known as the Weyl group, whose terms involve the $q$-analog of Kostants partition function. This formula, when evaluated at $q=1$, gives the multiplicit
Given a simple Lie algebra $mathfrak{g}$, Kostants weight $q$-multiplicity formula is an alternating sum over the Weyl group whose terms involve the $q$-analog of Kostants partition function. For $xi$ (a weight of $mathfrak{g}$), the $q$-analog of Ko
We classify the simple bounded weight modules of ${mathfrak{sl}(infty})$, ${mathfrak{o}(infty)}$ and ${mathfrak{sp}(infty)}$, and compute their annihilators in $U({mathfrak{sl}(infty}))$, $U({mathfrak{o}(infty))}$, $U({mathfrak{sp}(infty))}$, respectively.
We provide the first formulae for the weights of all simple highest weight modules over Kac-Moody algebras. For generic highest weights, we present a formula for the weights of simple modules similar to the Weyl-Kac character formula. For the remaini
The multiplicity of a weight in a finite-dimensional irreducible representation of a simple Lie algebra g can be computed via Kostants weight multiplicity formula. This formula consists of an alternating sum over the Weyl group (a finite group) and i