We track the evolution of entropy and black holes in a cyclic universe that undergoes repeated intervals of expansion followed by slow contraction and a smooth (non-singular) bounce. In this kind of cyclic scenario, there is no big crunch and no chaotic mixmaster behavior. We explain why the entropy following each bounce is naturally partitioned into near-maximal entropy in the matter-radiation sector and near-minimal in the gravitational sector, satisfying the Weyl curvature conditions conjectured to be essential for a cosmology consistent with observations. As a result, this kind of cyclic universe can undergo an unbounded number of cycles in the past and/or the future.