ﻻ يوجد ملخص باللغة العربية
This work settles the problem of constructing entropy stable non-oscillatory (ESNO) fluxes by framing it as a least square optimization problem. A flux sign stability condition is introduced and utilized to construct arbitrary order entropy stable flux as a convex combination of entropy conservative and non-oscillatory flux. This simple approach is robust which does not explicitly requires the computation of costly dissipation operator and high order reconstruction of scaled entropy variable for constructing the diffusion term. The numerical diffusion is optimized in the sense that entropy stable flux reduces to the underlying non-oscillatory flux. Different non-oscillatory entropy stable fluxes are constructed and used to compute the numerical solution of various standard scalar and systems test problems. Computational results show that entropy stable schemes are comparable in term of non-oscillatory nature of schemes using only the underlying non-oscillatory fluxes. Moreover, these entropy stable schemes maintains the formal order of accuracy of the lower order flux used in the convex combination.
A high-order quasi-conservative discontinuous Galerkin (DG) method is proposed for the numerical simulation of compressible multi-component flows. A distinct feature of the method is a predictor-corrector strategy to define the grid velocity. A Lagra
In this paper, a high order quasi-conservative discontinuous Galerkin (DG) method using the non-oscillatory kinetic flux is proposed for the 5-equation model of compressible multi-component flows with Mie-Gruneisen equation of state. The method mainl
A conservative flux postprocessing algorithm is presented for both steady-state and dynamic flow models. The postprocessed flux is shown to have the same convergence order as the original flux. An arbitrary flux approximation is projected into a cons
In this work we analyze the entropic properties of the Euler equations when the system is closed with the assumption of a polytropic gas. In this case, the pressure solely depends upon the density of the fluid and the energy equation is not necessary
Rational exponential integrators (REXI) are a class of numerical methods that are well suited for the time integration of linear partial differential equations with imaginary eigenvalues. Since these methods can be parallelized in time (in addition t