ﻻ يوجد ملخص باللغة العربية
For an irregular variety $X$ of general type, we show that if a general fiber $F$ of the Albanese morphism of $X$ satisfies certain Hodge theoretic condition, the $0$-th cohomological support loci of $K_X$ generates the Picard variety of $X$ . We then show that the condition that the $0$-th cohomological support loci of $K_X$ generates the Picard variety of $X$ can often be applied to prove the birationality of certain pluricanonical maps of $X$.
In this paper we will prove a uniformity result for the Iitaka fibration $f:X rightarrow Y$, provided that the generic fiber has a good minimal model and the variation of $f$ is zero or that $kappa(X)=rm{dim}(X)-1$.
We introduce and study several new topological operads that should be regarded as nonsymmetric analogues of the operads of little 2-disks, framed little 2-disks, and Deligne-Mumford compactifications of moduli spaces of genus zero curves with marked
We present an algorithm to construct a basis of k-th extension group of a D-module M in ring of the formal power series Ext_D^k(M,O).
The flex locus parameterizes plane cubics with three collinear cocritical points under a projection, and the gothic locus arises from quadratic differentials with zeros at a fiber of the projection and with poles at the cocritical points. The flex an
Let $Xsubset mathbb{P}^r$ be an integral and non-degenerate variety. Let $sigma _{a,b}(X)subseteq mathbb{P}^r$, $(a,b)in mathbb{N}^2$, be the join of $a$ copies of $X$ and $b$ copies of the tangential variety of $X$. Using the classical Alexander-Hir