ترغب بنشر مسار تعليمي؟ اضغط هنا

Convergence Rate Analysis for Fixed-Point Iterations of Generalized Averaged Nonexpansive Operators

384   0   0.0 ( 0 )
 نشر من قبل Yizun Lin
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We estimate convergence rates for fixed-point iterations of a class of nonlinear operators which are partially motivated from solving convex optimization problems. We introduce the notion of the generalized averaged nonexpansive (GAN) operator with a positive exponent, and provide a convergence rate analysis of the fixed-point iteration of the GAN operator. The proposed generalized averaged nonexpansiveness is weaker than the averaged nonexpansiveness while stronger than nonexpansiveness. We show that the fixed-point iteration of a GAN operator with a positive exponent converges to its fixed-point and estimate the local convergence rate (the convergence rate in terms of the distance between consecutive iterates) according to the range of the exponent. We prove that the fixed-point iteration of a GAN operator with a positive exponent strictly smaller than 1 can achieve an exponential global convergence rate (the convergence rate in terms of the distance between an iterate and the solution). Furthermore, we establish the global convergence rate of the fixed-point iteration of a GAN operator, depending on both the exponent of generalized averaged nonexpansiveness and the exponent of the H$ddot{text{o}}$lder regularity, if the GAN operator is also H$ddot{text{o}}$lder regular. We then apply the established theory to three types of convex optimization problems that appear often in data science to design fixed-point iterative algorithms for solving these optimization problems and to analyze their convergence properties.



قيم البحث

اقرأ أيضاً

This paper investigates optimal error bounds and convergence rates for general Mann iterations for computing fixed-points of non-expansive maps in normed spaces. We look for iterations that achieve the smallest fixed-point residual after $n$ steps, b y minimizing a worst-case bound $|x^n-Tx^n|le R_n$ derived from a nested family of optimal transport problems. We prove that this bound is tight so that minimizing $R_n$ yields optimal iterations. Inspired from numerical results we identify iterations that attain the rate $R_n=O(1/n)$, which we also show to be the best possible. In particular, we prove that the classical Halpern iteration achieves this optimal rate for several alternative stepsizes, and we determine analytically the optimal stepsizes that attain the smallest worst-case residuals at every step $n$, with a tight bound $R_napproxfrac{4}{n+4}$. We also determine the optimal Halpern stepsizes for affine nonexpansive maps, for which we get exactly $R_n=frac{1}{n+1}$. Finally, we show that the best rate for the classical Krasnoselskiu{i}-Mann iteration is $Omega(1/sqrt{n})$, and we present numerical evidence suggesting that even after introducing inertial terms one cannot reach the faster rate $O(1/n)$.
We present a self-contained analysis of a particular family of metrics over the set of non-negative integers. We show that these metrics, which are defined through a nested sequence of optimal transport problems, provide tight estimates for general K rasnoselskii-Mann fixed point iterations for non-expansive maps. We also describe some of their very special properties, including their monotonicity and the so-called convex quadrangle inequality that yields a greedy algorithm to compute them efficiently.
For optimal power flow problems with chance constraints, a particularly effective method is based on a fixed point iteration applied to a sequence of deterministic power flow problems. However, a priori, the convergence of such an approach is not nec essarily guaranteed. This article analyses the convergence conditions for this fixed point approach, and reports numerical experiments including for large IEEE networks.
The problem of computing the smallest fixed point of an order-preserving map arises in the study of zero-sum positive stochastic games. It also arises in static analysis of programs by abstract interpretation. In this context, the discount rate may b e negative. We characterize the minimality of a fixed point in terms of the nonlinear spectral radius of a certain semidifferential. We apply this characterization to design a policy iteration algorithm, which applies to the case of finite state and action spaces. The algorithm returns a locally minimal fixed point, which turns out to be globally minimal when the discount rate is nonnegative.
In this article, we propose a Krasnoselskiv{i}-Mann-type algorithm for finding a common fixed point of a countably infinite family of nonexpansive operators $(T_n)_{n geq 0}$ in Hilbert spaces. We formulate an asymptotic property which the family $(T _n)_{n geq 0}$ has to fulfill such that the sequence generated by the algorithm converges strongly to the element in $bigcap_{n geq 0} operatorname{Fix} T_n$ with minimum norm. Based on this, we derive a forward-backward algorithm that allows variable step sizes and generates a sequence of iterates that converge strongly to the zero with minimum norm of the sum of a maximally monotone operator and a cocoercive one. We demonstrate the superiority of the forward-backward algorithm with variable step sizes over the one with constant step size by means of numerical experiments on variational image reconstruction and split feasibility problems in infinite dimensional Hilbert spaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا