STAR-RIS Aided NOMA in Multi-Cell Networks: A General Analytical Framework with Gamma Distributed Channel Modeling


الملخص بالإنكليزية

The simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) is capable of providing full-space coverage of smart radio environments. This work investigates STAR-RIS aided downlink non-orthogonal multiple access (NOMA) multi-cell networks, where the energy of incident signals at STAR-RISs is split into two portions for transmitting and reflecting. We first propose a fitting method to model the distribution of composite small-scale fading power as the tractable Gamma distribution. Then, a unified analytical framework based on stochastic geometry is provided to capture the random locations of RIS-RISs, base stations (BSs), and user equipments (UEs). Based on this framework, we derive the coverage probability and ergodic rate of both the typical UE and the connected UE. In particular, we obtain closed-form expressions of the coverage probability in interference-limited scenarios. We also deduce theoretical expressions in traditional RIS aided networks for comparison. The analytical results show that there exist optimal energy splitting coefficients of STAR-RISs to simultaneously maximize the system coverage and ergodic rate. The numerical results demonstrate that: 1) RISs enhance the system coverage and NOMA schemes help improve the rate performance; 2) in low signal-to-noise ratio (SNR) regions, STAR-RISs outperform traditional RISs while in high SNR regions the conclusion is opposite.

تحميل البحث