ﻻ يوجد ملخص باللغة العربية
We explore the system size dependence of heavy-quark-QGP interaction by studying the heavy flavor meson suppression and elliptic flow in Pb-Pb, Xe-Xe, Ar-Ar and O-O collisions at the LHC. The space-time evolution of the QGP is simulated using a (3+1)-dimensional viscous hydrodynamic model, while the heavy-quark-QGP interaction is described by an improved Langevin approach that includes both collisional and radiative energy loss inside a thermal medium. Within this framework, we provides a reasonable description of the $D$ meson suppression and flow coefficients in Pb-Pb collisions, as well as predictions for both $D$ and $B$ meson observables in other collision systems yet to be measured. We find a clear hierarchy for the heavy meson suppression with respect to the size of the colliding nuclei, while their elliptic flow coefficient relies on both the system size and the geometric anisotropy of the QGP. Sizable suppression and flow are predicted for both $D$ and $B$ mesons in O-O collisions, which serve as a crucial bridge of jet quenching between large and small collision systems. Scaling behaviors between different collision systems are shown for the nuclear suppression factor as a function of the participant number ($N_mathrm{part}$), and for the $N_mathrm{part}^{1/3}$-rescaled elliptic flow coefficient as a function of the centrality class of nuclear collisions.
Recent experiments have observed large anisotropic collective flows in high multiplicity proton-lead collisions at the Large Hadron Collider (LHC), which indicates the possible formation of mini quark-gluon plasma (QGP) in small collision systems. Ho
We present the reweighting of two sets of nuclear PDFs, nCTEQ15 and EPPS16, using a selection of experimental data on heavy-flavor meson [D0, J/psi, J/psi from B and Upsilon(1S)] production in proton-lead collisions at the LHC which were not used in
The stochastic dynamics of c and b quarks in the fireball created in nucleus-nucleus collisions at RHIC and LHC is studied employing a relativistic Langevin equation, based on a picture of multiple uncorrelated random collisions with the medium. Heav
Formation and evolution of the elliptic flow pattern in Pb+Pb collisions at sqrt{s}=5.5 ATeV and in Au+Au collisions at sqrt{s}=200 AGeV are analyzed for different hadron species within the framework of HYDJET++ Monte-Carlo model. The model contains
We study the relevance of experimental data on heavy-flavor [$D^0$, $J/psi$, $Brightarrow J/psi$ and $Upsilon(1S)$ mesons] production in proton-lead collisions at the LHC to improve our knowledge of the gluon-momentum distribution inside heavy nuclei