ﻻ يوجد ملخص باللغة العربية
Person re-identification (ReID) aims to re-identify a person from non-overlapping camera views. Since person ReID data contains sensitive personal information, researchers have adopted federated learning, an emerging distributed training method, to mitigate the privacy leakage risks. However, existing studies rely on data labels that are laborious and time-consuming to obtain. We present FedUReID, a federated unsupervised person ReID system to learn person ReID models without any labels while preserving privacy. FedUReID enables in-situ model training on edges with unlabeled data. A cloud server aggregates models from edges instead of centralizing raw data to preserve data privacy. Moreover, to tackle the problem that edges vary in data volumes and distributions, we personalize training in edges with joint optimization of cloud and edge. Specifically, we propose personalized epoch to reassign computation throughout training, personalized clustering to iteratively predict suitable labels for unlabeled data, and personalized update to adapt the server aggregated model to each edge. Extensive experiments on eight person ReID datasets demonstrate that FedUReID not only achieves higher accuracy but also reduces computation cost by 29%. Our FedUReID system with the joint optimization will shed light on implementing federated learning to more multimedia tasks without data labels.
Recent self-supervised contrastive learning provides an effective approach for unsupervised person re-identification (ReID) by learning invariance from different views (transform
Federated learning is a privacy-preserving machine learning technique that learns a shared model across decentralized clients. It can alleviate privacy concerns of personal re-identification, an important computer vision task. In this work, we implem
Most of unsupervised person Re-Identification (Re-ID) works produce pseudo-labels by measuring the feature similarity without considering the distribution discrepancy among cameras, leading to degraded accuracy in label computation across cameras. Th
In more and more application areas, we are witnessing the emergence of complex workflows that combine computing, analytics and learning. They often require a hybrid execution infrastructure with IoT devices interconnected to cloud/HPC systems (aka Co
In this paper, we present a large scale unlabeled person re-identification (Re-ID) dataset LUPerson and make the first attempt of performing unsupervised pre-training for improving the generalization ability of the learned person Re-ID feature repres