ﻻ يوجد ملخص باللغة العربية
For time-dependent problems with high-contrast multiscale coefficients, the time step size for explicit methods is affected by the magnitude of the coefficient parameter. With a suitable construction of multiscale space, one can achieve a stable temporal splitting scheme where the time step size is independent of the contrast. Consider the parabolic equation with heterogeneous diffusion parameter, the flow rates vary significantly in different regions due to the high-contrast features of the diffusivity. In this work, we aim to introduce a multirate partially explicit splitting scheme to achieve efficient simulation with the desired accuracy. We first design multiscale subspaces to handle flow with different speed. For the fast flow, we obtain a low-dimensional subspace with respect to the high-diffusive component and adopt an implicit time discretization scheme. The other multiscale subspace will take care of the slow flow, and the corresponding degrees of freedom are treated explicitly. Then a multirate time stepping is introduced for the two parts. The stability of the multirate methods is analyzed for the partially explicit scheme. Moreover, we derive local error estimators corresponding to the two components of the solutions and provide an upper bound of the errors. An adaptive local temporal refinement framework is then proposed to achieve higher computational efficiency. Several numerical tests are presented to demonstrate the performance of the proposed method.
Many multiscale problems have a high contrast, which is expressed as a very large ratio between the media properties. The contrast is known to introduce many challenges in the design of multiscale methods and domain decomposition approaches. These is
In this work, we design and investigate contrast-independent partially explicit time discretizations for wave equations in heterogeneous high-contrast media. We consider multiscale problems, where the spatial heterogeneities are at subgrid level and
This work continues a line of works on developing partially explicit methods for multiscale problems. In our previous works, we have considered linear multiscale problems, where the spatial heterogeneities are at subgrid level and are not resolved. I
Splitting is a method to handle application problems by splitting physics, scales, domain, and so on. Many splitting algorithms have been designed for efficient temporal discretization. In this paper, our goal is to use temporal splitting concepts in
In this work we formulate and test a new procedure, the Multiscale Perturbation Method for Two-Phase Flows (MPM-2P), for the fast, accurate and naturally parallelizable numerical solution of two-phase, incompressible, immiscible displacement in porou