ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding Hydrophobic Effects: Insights from Water Density Fluctuations

99   0   0.0 ( 0 )
 نشر من قبل Nicholas Rego
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The aversion of hydrophobic solutes for water drives diverse interactions and assemblies across materials science, biology and beyond. % Here, we review the theoretical, computational and experimental developments which underpin a contemporary understanding of hydrophobic effects. % We discuss how an understanding of density fluctuations in bulk water can shed light on the fundamental differences in the hydration of molecular and macroscopic solutes; these differences, in turn, explain why hydrophobic interactions become stronger upon increasing temperature. We also illustrate the sensitive dependence of surface hydrophobicity on the chemical and topographical patterns the surface displays, which makes the use approximate approaches for estimating hydrophobicity particularly challenging. Importantly, the hydrophobicity of complex surfaces, such as those of proteins, which display nanoscale heterogeneity, can nevertheless be characterized using interfacial water density fluctuations; such a characterization also informs protein regions that mediate their interactions. Finally, we build upon an understanding of hydrophobic hydration and the ability to characterize hydrophobicity to inform the context-dependent thermodynamic forces that drive hydrophobic interactions and the desolvation barriers that impede them.



قيم البحث

اقرأ أيضاً

An understanding of density fluctuations in bulk water has made significant contributions to our understanding of the hydration and interactions of idealized, purely repulsive hydrophobic solutes. To similarly inform the hydration of realistic hydrop hobic solutes that have dispersive interactions with water, here we characterize water density fluctuations in the presence of attractive fields that correspond to solute-water attractions. We find that when the attractive field acts only in the solute hydration shell, but not in the solute core, it does not significantly alter water density fluctuations in the solute core region. We further find that for a wide range of solute sizes and attraction strengths, the free energetics of turning on the attractive fields in bulk water are accurately captured by linear response theory. Our results also suggest strategies for more efficiently estimating hydration free energies of realistic solutes in bulk water and at interfaces.
224 - S. A. Egorov 2011
Integral equation theory is applied to a coarse-grained model of water to study potential of mean force between hydrophobic solutes. Theory is shown to be in good agreement with the available simulation data for methane-methane and fullerene-fulleren e potential of mean force in water; the potential of mean force is also decomposed into its entropic and enthalpic contributions. Mode coupling theory is employed to compute self-diffusion coefficient of water, as well as diffusion coefficient of a dilute hydrophobic solute; good agreement with molecular dynamics simulation results is found.
Interfaces are a most common motif in complex systems. To understand how the presence of interfaces affect hydrophobic phenomena, we use molecular simulations and theory to study hydration of solutes at interfaces. The solutes range in size from sub- nanometer to a few nanometers. The interfaces are self-assembled monolayers with a range of chemistries, from hydrophilic to hydrophobic. We show that the driving force for assembly in the vicinity of a hydrophobic surface is weaker than that in bulk water, and decreases with increasing temperature, in contrast to that in the bulk. We explain these distinct features in terms of an interplay between interfacial fluctuations and excluded volume effects---the physics encoded in Lum-Chandler-Weeks theory [J. Phys. Chem. B 103, 4570--4577 (1999)]. Our results suggest a catalytic role for hydrophobic interfaces in the unfolding of proteins, for example, in the interior of chaperonins and in amyloid formation.
Density Functional Theory calculations are used to investigate the role of substrate-induced cooperative effects on the adsorption of water on a partially oxidized transition metal surface, O(2x2)/Ru(0001). Focussing particularly on the dimer configu ration, we analyze the different contributions to its binding energy. A significant reinforcement of the intermolecular hydrogen-bond (H-bond), also supported by the observed frequency shifts of the vibration modes, is attributed to the polarization of the donor molecule when bonded to the Ru atoms in the substrate. This result is further confirmed by our calculations for a water dimer interacting with a small Ru cluster, which clearly show that the observed effect does not depend critically on fine structural details and/or the presence of co-adsorbates. Interestingly, the cooperative reinforcement of the H-bond is suppressed when the acceptor molecule, instead of the donor, is bonded to the surface. This simple observation can be used to rationalize the relative stability of different condensed structures of water on metallic substrates.
When water molecules are confined to nanoscale spacings, such as in the nanometer size pores of activated carbon fiber (ACF), their freezing point gets suppressed down to very low temperatures ($sim$ 150 K), leading to a metastable liquid state with remarkable physical properties. We have investigated the ambient pressure diffusive dynamics of water in microporous Kynoltexttrademark ACF-10 (average pore size $sim$11.6 {AA}, with primarily slit-like pores) from temperature $T=$ 280 K in its stable liquid state down to $T=$ 230 K into the metastable supercooled phase. The observed characteristic relaxation times and diffusion coefficients are found to be respectively higher and lower than those in bulk water, indicating a slowing down of the water mobility with decreasing temperature. The observed temperature-dependent average relaxation time $<tau>$ when compared to previous findings indicate that it is the size of the confining pores - not their shape - that primarily affects the dynamics of water for pore sizes larger than 10 {AA}. The experimental observations are compared to complementary molecular dynamics simulations of a model system, in which we studied the diffusion of water within the 11.6 {AA} gap of two parallel graphene sheets. We find generally a reasonable agreement between the observed and calculated relaxation times at the low momentum transfer $Q$ ($Qle 0.9$ AA${^{-1}}$). At high $Q$ however, where localized dynamics becomes relevant, this ideal system does not satisfactorily reproduce the measurements. The best agreement is obtained for the diffusion parameter $D$ associated with the hydrogen-site when a representative stretched exponential function, rather than the standard bi-modal exponential model, is used to parameterize the self-correlation function $I(Q,t)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا